Winkel SS 2012: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Definition V.4: (Nebenwinkel))
(Definition V.2: (Inneres eines Winkels))
 
(4 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 38: Zeile 38:
 
=== Definition des Inneren eines Winkels ===
 
=== Definition des Inneren eines Winkels ===
 
==== Definition V.2: (Inneres eines Winkels) ====
 
==== Definition V.2: (Inneres eines Winkels) ====
::Das Innere des Winkels <math>\ \angle ASB</math> ist ...
+
::Das Innere des Winkels <math>\ \angle ASB</math> ist ist die Schnittmenge der beiden Halbebenen <math>SA,B^+</math> und <math>SB,A^+</math>.
 +
--[[Benutzer:Snooth|Snooth]] 16:16, 28. Jun. 2012 (CEST)
  
 
==== Satz V.1 ====
 
==== Satz V.1 ====
Zeile 84: Zeile 85:
 
::Zwei Winkel bilden ein Paar von Scheitelwinkeln ....
 
::Zwei Winkel bilden ein Paar von Scheitelwinkeln ....
 
<br />
 
<br />
'''Definitionsversuch 1 Scheitelwinkel von Nummero6/Tchu Tcha Tcha:'''<br />
+
Damit wir hier noch durchsehen, habe ich den hier eingetragenen Definitionen eine eigene Datei spendiert:<br />
::Zwei Winkel bilden ein Paar von Scheitelwinkeln, wenn gilt:<br />
+
[[Definitionsversuche V3]]
::Winkel 1: <math>\angle \ SA^{+} , \ SB^{+}</math><br />
+
::Winkel 2: <math>\angle \ SA^{-} , \ SB^{-}</math><br />
+
'''Definitionsversuch 2 Scheitelwinkel:'''<br />
+
::Zwei Winkel bilden ein Paar von Scheitelwinkeln, wenn sie einen gemeinsamen Scheitelpunkt haben und für jeden Winkel gilt:<br />
+
* jeweils beide Schenkel sind Teilmenge von genau 2 Geraden und
+
* jeder Winkel liegt bezüglich dieser beiden Geraden in einer anderen Halbebene
+
--[[Benutzer:Nummero6|Tchu Tcha Tcha]] 20:47, 10. Jun. 2012 (CEST)
+
  
 
== Nebenwinkel ==
 
== Nebenwinkel ==
Zeile 103: Zeile 97:
 
===== Definition V.4: (Nebenwinkel) =====
 
===== Definition V.4: (Nebenwinkel) =====
 
::Zwei Winkel bilden ein Paar von Nebenwinkeln, wenn ... .
 
::Zwei Winkel bilden ein Paar von Nebenwinkeln, wenn ... .
::... sie einen gemeinsamen Schenkel besitzen und sie sich zu 180° ergänzen, d.h. <u>supplementär</u> sind.
+
 
--[[Benutzer:Snooth|Snooth]] 15:49, 14. Jun. 2012 (CEST)
+
  
 
Damit wir hier noch durchsehen, habe ich den hier eingetragenen Definitionen eine eigene Datei spendiert:<br />
 
Damit wir hier noch durchsehen, habe ich den hier eingetragenen Definitionen eine eigene Datei spendiert:<br />
 
[[DefinitionsversucheV4]]
 
[[DefinitionsversucheV4]]
 +
 +
  
 
<!--- Was hier drunter steht muss stehen bleiben --->
 
<!--- Was hier drunter steht muss stehen bleiben --->

Aktuelle Version vom 28. Juni 2012, 15:16 Uhr


Inhaltsverzeichnis

Definition des Winkelbegriffs

Definition V.1: (Winkel)

Ein Winkel ist ein Paar nichtidentischer Halbgeraden, die den Anfangspunkt gemeinsam haben. Die Halbgeraden heißen Schenkel des Winkels. Der gemeinsame Anfangspunkt seiner Schenkel wird Scheitel(punkt) des Winkels genannt.

Arten, Winkel zu beschreiben bzw. zu bezeichnen

Zur Bezeichnung von Winkeln werden üblicherweise kleine griechische Buchstaben verwendet. Über Punkte und Halbgeraden kann man Winkel wie folgt bezeichnen:

Beispiel Beschreibung in Zeichen Quelltext in Tex
Winkel pq.svg Winkel, der aus den beiden Strahlen \ p und \ q besteht. \angle pq \angle pq
Winkel ASB.svg Winkel, der aus den beiden Strahlen \ SA^+ und \ SB^+ besteht. \angle ASB \angle ASB

Das Innere eines Winkels

So ist es zu verstehen

[ www.ph-heidelberg.de is not an authorized iframe site ]
Klicken Sie auf die Steuerknöpfe um die Halbebenen ein- und auszublenden.

Definition des Inneren eines Winkels

Definition V.2: (Inneres eines Winkels)

Das Innere des Winkels \ \angle ASB ist ist die Schnittmenge der beiden Halbebenen SA,B^+ und SB,A^+.

--Snooth 16:16, 28. Jun. 2012 (CEST)

Satz V.1

Das Innere eines Winkels ist konvex.

Beweis von Satz V.1

trivial entsprechend Satz IV.2, Satz IV.3 und der Definition V.2

Nullwinkel, gestreckte Winkel, überstumpfe Winkel?

Entsprechend Definitionen V.1 und V.2 beinhaltet unsere Geometrie keine überstumpfen Winkel, keinen Nullwinkel und keine gestreckten Winkel.

Bis hierhin alles verstanden?

In welchen Fällen sind die jeweils blau gefärbten Punktmengen Modelle für Winkel?

Winkel 01.svg Winkel 02.svg Winkel 03.svg Winkel 04.svg
Punktmenge 1 Punktmenge 2 Punktmenge 3 Punktmenge 4
Winkel 05.svg Winkel 06.svg Winkel 07.svg Winkel 08.svg
Punktmenge 5 Punktmenge 6 Punktmenge 7 Punktmenge 8

1. Die blaue Punktmenge ist ein Winkel:

Punktmenge 1
Punktmenge 2
Punktmenge 3
Punktmenge 4
Punktmenge 5
Punktmenge 6
Punktmenge 7
Punktmenge 8

Punkte: 0 / 0

Bemerkung: Halbgeraden können natürlich nicht vollständig gezeichnet werden. Die Zeichnungen sind so zu verstehen, dass die Schenkel Halbgeraden sind.

Videos zum Winkelbegriff

Scheitelwinkel und Nebenwinkel

Scheitelwinkel

Beispiele und Gegenbeispiele

Sie werden den Begriff des Scheitelwinkels mit Ihren Schülern erarbeiten müssen. Entwickeln Sie ein Arbeitsblatt, das Repräsentanten und Gegenrepräsentanten bezüglich des Begriffs Scheitelwinkel enthält und binden Sie dieses in die folgende Datei ein:
Erarbeitung des Begriffs Scheitelwinkel

Definition

Definition V.3: (Scheitelwinkel)
Zwei Winkel bilden ein Paar von Scheitelwinkeln ....


Damit wir hier noch durchsehen, habe ich den hier eingetragenen Definitionen eine eigene Datei spendiert:
Definitionsversuche V3

Nebenwinkel

Beispiele und Gegenbeispiele

Jeder von Ihnen könnte anhand von Skizzen Beispiele bzw. Gegenbespiele für Nebenwinkel identifizieren. Ihre Schüler könnten das sicherlich auch. Die Formulierung einer Definition ist schwieriger. In der folgenden Datei stellen wir verschiedene nicht korrekte Definitionsversuche vor. Sie sollen durch geeignete Skizzen zeigen, dass die Definitionen nicht ganz korrekt sind.
*m.g.* Arbeitsblatt Nebenwinkel.pdf
Erarbeitung des Begriffs Nebenwinkel

Definition

Definition V.4: (Nebenwinkel)
Zwei Winkel bilden ein Paar von Nebenwinkeln, wenn ... .


Damit wir hier noch durchsehen, habe ich den hier eingetragenen Definitionen eine eigene Datei spendiert:
DefinitionsversucheV4