Sehnenvierecke und der Satz über die gegenüberliegenden Winkel im Sehnenviereck: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Begriff des Sehnenvierecks)
(Die Satzfindung)
 
(18 dazwischenliegende Versionen von 4 Benutzern werden nicht angezeigt)
Zeile 2: Zeile 2:
 
===== Definition XV.1: (Kreissehne) =====
 
===== Definition XV.1: (Kreissehne) =====
 
:: Es sei <math>\ k</math> ein Kreis. Die Strecke <math>\ \overline{AB}</math> ist eine Sehen des Kreises <math>\ k : \Leftrightarrow ... </math>.
 
:: Es sei <math>\ k</math> ein Kreis. Die Strecke <math>\ \overline{AB}</math> ist eine Sehen des Kreises <math>\ k : \Leftrightarrow ... </math>.
 +
wenn die Endpunkte der Strecke <math>\ \overline{AB}</math> auf dem Kreis liegen.
 +
--[[Benutzer:Nicola|Nicola]] 19:22, 25. Jul. 2010 (UTC)
 +
 
===== Definition XV.2: (die Durchmesser eines Kreises) =====
 
===== Definition XV.2: (die Durchmesser eines Kreises) =====
:: Das können sie selbst. Hinweis: Sehne ist jetzt bereits geklärt.
+
:: Ist eine Sehne, die durch den Mittelpunkt zur Teilmenge hat.
 +
--[[Benutzer:Nicola|Nicola]] 19:22, 25. Jul. 2010 (UTC)<br />
 +
Vorschlag--[[Benutzer:TimoRR|TimoRR]] 15:56, 26. Jul. 2010 (UTC): Der Durchmesser eines Kreises ist eine Sehne von k, die durch den Mittelpunkt von k geht.
  
 
===== Definition XV.3: (Radien eines Kreises) =====
 
===== Definition XV.3: (Radien eines Kreises) =====
 
:: Das können Sie selbst. Hinweis: Jeder Kreis hat unendlich viele Radien.
 
:: Das können Sie selbst. Hinweis: Jeder Kreis hat unendlich viele Radien.
 +
:: Der Radius ist die Strecke <math>\ \overline{MP}</math>, wenn M Mittelpunkt des Kreises k ist und P ein beliebiger Punkt von k. --[[Benutzer:Nicola|Nicola]] 19:22, 25. Jul. 2010 (UTC)
 +
 +
===== Definition XV.4: (Sehnenviereck) =====
 +
:: Ein Viereck, dessen Eckpunkte auf demselben Kreis k liegen.
 +
:: Ein Viereck, dessen Seiten Sehnen desselben Kreises k sind.
 +
--[[Benutzer:Nicola|Nicola]] 19:22, 25. Jul. 2010 (UTC)
  
===== Definition XV.4: (Sehenenviereck) =====
 
::Ein Viereck, dessen Seiten ... .
 
 
== Der Satz über die gegenüberliegenden Winkel im Sehnenviereck ==
 
== Der Satz über die gegenüberliegenden Winkel im Sehnenviereck ==
 
=== Die Satzfindung ===
 
=== Die Satzfindung ===
 
==== sehr speziell: Quadrate ====
 
==== sehr speziell: Quadrate ====
Jedes Quadrat hat einen Umkreis.
+
Jedes Quadrat hat einen Umkreis und ist somit ein Sehnenviereck.<br /><br />
 
[[Bild:Quadrat_als_Sehnenviereck.png]]
 
[[Bild:Quadrat_als_Sehnenviereck.png]]
 +
 +
==== weniger speziell, aber immer noch ziemlich speziell: Rechtecke ====
 +
Jedes Rechteck ist ein Sehnenviereck.
 +
<ggb_applet width="419" height="444"  version="3.2" ggbBase64="UEsDBBQACAAIAEKv9TwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s1VrLcts2FF03X8HhXjQeJEjMSMlIdheZSetMnWbRTYYiIQk1RaokZEv+qyb5jn5TLwBST0s2/Yhjz3ggXoDAxTn3XDyk7rvFNHOuRFnJIu+52EOuI/KkSGU+7rlzNepE7ru3b7pjUYzFsIydUVFOY9VzqUdcbZ/Lt29+6VaT4tqJM9PksxTXPXcUZ5VwnWpWijitJkKoLXs8X8hMxuXyfPi3SFS1rrCdvM9ncxhFlXOwJdP0g6yaxxMz4CyT6kxeyVSUTlYkPZcF4Dp8+ixKJZM467k+shbSc8lOJZiorp0UpbwpcqWbrzsfgcVxKnkj4E2kbd0TM9GumCeZTGWc68kYP6CR41zLVE1gQMyhSyHHE6VH57a3pCjK9GJZKTF1Fn+Jsui5Hcy8wA8JxZwGiIUsCF1naes493yMQ59w5gc0wBhABI/BFco9gpgfhhjmSjAK4J2DVWZocXUhlAIqKydeiDXI41KmWw/vq0GRrU2zQubqNJ6peWnigNamC7XUowFwpZ5kPx9norYRoGkiksthsbgwwGFqu/60nJlXjEPD8WmRFaVTakrA/3FdDm1p2mhPV62QaYNMi7oP3emqHnNiWphyaEvTKpO5da2eOW5mjVEzjKwcbYDOdfiuJp/FQwHh4DrzXKoPzQOEzWU9VWxf+H0+HYJuNgNn1Sd+qj67Jzsh170UZS4yG1g5cDsv5pVzpQPYjmUcSUUip/BoK2pIYk3Xn+CAtaZiXIrGcas6C5ipRZvBu2PunjROaB8q8DVRkD5gPkrPRatbgbJ67tQbe66TxkpbtXwyMRWgLWViwoTUCpvf3FUiKUxOaNRf169Rhupb48NEUpzNJjFYvHoCWbyEDLE5JdPf+WhUCeUsQIug2SWEON2o/a1It2GIc4DTzBFkPNPda8JmQqR1zlR1lDszGNBoZoMNA2KlB2O6LYzWofrDjX3ZtLH60tnEjEtr8i1gd0A3+IL3wduOvA1vngK+ZwOI1wChtvgkxXQa56mTx1MY51SWSSYMKFKvJE6MdIQ5MbZoWSDmqqlKbHd1J3twQ5TLZIVl4m4nGDUBHeeiqkwWVJv57nA434MQ9HA67uUcLFQivwLXirJynAWqmVqiBv7GsgDUOsa0xLXpBm9wA8yXcuH0m/b9plVfL73M41t/DOy0HqLvQ89GFP1A7ykaz/7JrfeVzY4QSIkcyeQ46R+NKLY5T/ao7h+neltZ/QclJUzs0mbKhycm4hspkOhHCI94lDKKCUJRGFEW4sAmqsDDlPtgCaA+IBF7jCw/QFjuENS3olz0Yenc4yo+zpWO8hUV8QNV2TpPPkKWa7hRnedwnef2YW6h4x21yClsjhOpjnPxPlew0wAI9hRjCImh0OptprjByqCNggYPUhDzDeC6GNqitXyIBZji+xHCPcYoi0LOMcGMguiePvzPS9gWjYs8zm4RwqDBfRfuYQsRDF+VCDp4Z7XfJ+G5VXCUkv4hStIWlKSvm5Jb1oUXzkzDw5nptE1mOv2xmal97kFexFAABh+q/RD7+DHJ5w5U08OonrVB9eyl8n2HUAsbDu+H+qEdzy7sAXkM7B+LbAn55fbMMrCgn0JBa5y3kIcjfyaSS1znoS/Yth+aD/BGYj7AHjq1Z5pjJFk3GhpWPT/fUQYH1JAa4L30hNso5fApuBJj/bTeAn55ofk8ehsYepSENAx4RHxKWGC3GTT0WBBxwlFEw9BH/hOlXhNjmT4MrJICHCD2b5EuhZjp67vz/FMZ55W++rVtNm6n7knN8NVR0/E9EkachRTp/yDEW+uijz19dYt8HrIo4E+1Kr4ANcmrowZ7GCNCKCI+IwEOWPBrp8netyupwzygEJ4jjCKCOX69dKWvjq5dIaFgS0kd7nEeIkRCRDkKafBUZ99nIWd7dTffgOys7Wd2te7btXqwt6j/9+/xpdpc0694gtb6ffBnXuPreyEmNIp4hGjkM34X08cuzjHaPzscX5w3NlzY3pwf2G+1kVhcJusNVdQYs6y4/kOMMrEwMO/w1o6U3Q3XHilfW5Hy9aclpT48YP4KSKmVcnpQKd9akfJtlxTsQbIJOZyoWMh9SEHs5Wjh9eHk9q+Zfi5earGcHRTL91a8fL+Tl+jlchirebn9mvBH8nKy+V2q+clB/ZuLt/8DUEsHCFxRBbNRBgAApSEAAFBLAQIUABQACAAIAEKv9TxcUQWzUQYAAKUhAAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAAiwYAAAAA" framePossible = "false" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "true" showAlgebraInput = "false" allowRescaling = "true" />
 +
==== noch allgemeiner, aber immer noch ziemlich speziell: gleichschenklige Trapeze ====
 +
Jedes gleichschenklige Trapez ist ein Sehnenviereck.
 +
 +
<ggb_applet width="419" height="411"  version="3.2" ggbBase64="UEsDBBQACAAIAJGx9TwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s1VrbbtvGFn1uv4LgQ9GiNT1XcohaKWT7JUDcFHVOcNALCoocSVNTpEqOHMkH56OK/sf5prNnhpQlSpYtxU7sPITi3Getvfbs2ebJD/NJ7l3LqlZl0fNxgHxPFmmZqWLU82d6eCT8H159eTKS5UgOqsQbltUk0T2fBsQ35TP16ssvTupx+cFLctvkvZIfev4wyWvpe/W0kklWj6XUa+XJbK5ylVSLt4M/Zarr2wo3yOtiOoNZdDWDsnSSvVF1+3psJ5zmSp+ra5XJysvLtOeHHJYOv97LSqs0yXs+Q66E9HzSqYQiamrHZaVuykKb5reDD6HE82p1I6EnMmUnx3ajJ3KW5ipTSWE2Y9cBjTzvg8r0GCbEMQwp1WiszeyxGy0tyyq7XNRaTrz5L7Iqe/4RDgPOIkJxTDkKo5BHvrdwdXEcMIwjRuKQccoxBhBhxbAUGgcEhSyKMOyVYMShz51Vdmp5fSm1BiprL5nLW5BHlcrWXl7Xp2V+WzQtVaHPkqmeVdYOaFN0qRdmNgCuMpvsF6NcNmUEaBrL9GpQzi8tcJi6od8tpraLXdBgdFbmZeVVhhJY/6h5DtzTtjErXbZCtg2yLZoxzKDLehwT28I+B+5pW+WqcEtrdo7bXWPUTqNqzxTA4MZ8l5vPk4EEc/C9WaH0m/YFzOaq2Sp2HX6cTQagm1XDWY6JH2vMk+OOyZ1cyaqQuTOsAridlbPauzYG7OayC8lkqibw6ipwszpD179gAa40k6NKtgt3qnOA2Vq0aryd4pPjdhFmDTWsNdXgPmA/2uzFqFuDsnr+JBgFvpcl2pQa+eRyIkFb2tqENaklNhf+0pGU1ie06m/qb1GG6q32YS0pyafjBEqCZgN5sgAPsbolO97b4bCW2puDFkGzCzBxulJ7UWbrMCQFwGn3CDKemuENYVMps8Zn6sbKvSlMaDWzwoYFsTaThaYtzHZEzY8b19m2cfoy3sTOSxvyHWD3QHf6B94Eb93yVlbzGPA9GUBxAxDaF5+0nEySIvOKZALznKkqzaUFRZmTxEuQsTAvwQ4tB8RMt1WpG64ZZANusHKVLrFM/XUHo8eg40LWtfWCetXf3W3ODyAEHU7HgxYHB5UsrmFpZVV73hw1TC1QC39bMgfUjmzRAjdFN3iFG2C+UnOv37bvt6365ugNg3jtXwjltJmiz2BkK4o+NzFFu7K/Crf62nlHMKRUDVW6m/SfrCjWOU83qO7vpnpdWf2DnBIm7mizz8MdEyNWCoR9CuHRAPOY4AhHIsaYsZA3OsQQgggSCYEQJSI0Wzlcl2/ALjsM9Z0q5304OzfISnaTZcx8yUVyoCz3dpQfoctbvFHj6HDj6I62Ib2HljuKURMIkFOld9PxutAQbQAKG6qxnCTwMApud7lCzOk+Kjo9SEUhs5ibx8A99pYQcRhT/DBORCAYigQREEELwTl9Cgm8rSA2GpVFkm8Rw2kLfBfvwR5CGLwoIRzhzpG/ycJTy2AnJf27KMn2oCR72ZRsORyempMtTFzsOinkHmzIF8VG96RYRklPiP6lHJny7VI43QB/uBv8uhltidzzD6A34edBKDAPechACBFGYXtsCy5izmLKEBIIi0fixuKbm4BteUhDkLd507+ScmpSLG+Ld1VS1CY959qsZBAOcXuN2IYbXI/2ENroRQntaAvFq06QBUjENKaCUxSSkD25Cu8Kz0Z3cXPmrrYPjcvODs4bHByb7YAfx9Tgj4kQcPojhl34xQKIuwhEAgwTKhiPHRkkIEZtArOQhhHlh4Ri56rWSZHeYfpnW/IEycD0yC7OdsNczCayWskY3HYz48HSZu0Cu7Fl+HA7xxspovm0Auszd8Fm3ndyrmFSD2p6/ld/zUr9/W/ltayMzf7HvXvfel//CGj8evH7N8vfsHX75pr81/vtO69n/lt2ud2Qd7yxew2z+p0lfFaJq/pN8k7+e90vwnp0UmmbNHAAXajM2s+vF995BoHdKbgux+Mutyhg97q2+5OaG4w/YNvLfO/hqYFdoskT3ZWM0YoVzdHX42/crfFi0zt9lUzL+vu9PFTT5fl6KeTyJEeYRgE3hTTixlER/nh+asvx3AJzx0Gg9jik1aMc0vtZ8scHw4IGDI4FuChC8IWpyZUB3JHAAY1iSmgMJDDRKuazpVCUEwPekkI530cI5582hbJLAEHMREw4pjFjEPGyyAmABSSEF4oxJwhTzD4mSfIwVLclpu45mTvu5fmgCn05RhETIeI8xvFToPpTmS8g3u9get6EOw5Tk4GiTZZ8Ddj3CoZNrxo/n1mHD+1T+wN6DOwPBsHO/UGoW0aL8nLkp7sVYpPLA844PvhQRbvDge4dN/vjM+3no12rCDAimMURwRCa0pi0tx+ORRzDrYjgEAz1Od9zd1OTvjhqwA0wjENwDHBJQCxEy6gjIEBWTBA44wiFjDVRRxxgwVkYQVtGEYvDl8vW4MWx1QppWz7hxlS/oIzRbm6SF8fNQ4UErNj0HqZBxCHOgaCSIMIivPF50XNia/24t59nbT/s++1h3z3l//f37rPbfkO0JA5ady69OBAUPI9gMeZg3pyL+8jfdXHAaN9L8Mqfz4lwN4Xtfz7f52aQVOltjCXawjwvP/wsh7mcW6A7zB1Ey9mdtPyzFy3/dGlhQQyeBkyfweU0BnY+Gyu8Edz2z60+JSvHq9+u2U88m29cX/0fUEsHCCkjpU3sBwAAFSsAAFBLAQIUABQACAAIAJGx9TwpI6VN7AcAABUrAAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAAJggAAAAA" framePossible = "false" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "true" showAlgebraInput = "false" allowRescaling = "true" />
 +
==== allgemeines Sehnenviereck ====
 +
Ausgangslage: <math>\ \overline{ABCD}</math> ist ein gleichschenkliges Trapez.
 +
 +
Arbeitsauftrag: Bewegen Sie den Punkt <math>\ C</math> auf dem Kreis. Beobachten Sie, wie sich der rote und der blaue Winkel verändern. Was vermuten Sie bezüglich der Größe von <math>\ \gamma</math>? Was vermuten Sie hinsichtlich der Größen der gegenüberliegenden Winkel im Sehnenviereck?
 +
 +
 +
<ggb_applet width="419" height="411"  version="3.2" ggbBase64="UEsDBBQACAAIAJKz9TwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Vpbb+M2Fn7e/gpBD0WLrRXeSaHxFE7yMsCkU2xmB4ttF4Us0bY2suRKcsaeRX9UL79jf9MekpLje2LnMhNg52FkkxR5+H3nOzw88el3s3Hm3eiySou86+MA+Z7O4yJJ82HXn9aDjvK/e/XF6VAXQ90vI29QlOOo7vo0IL5pn6avvvjLaTUqPnhRZoe8T/WHrj+Iskr7XjUpdZRUI63rlfZoOkuzNCrnb/v/1nFd3Xa4SV7nkymsUpdTaIvHyZu0ar+e2AUnWVpfpDdpoksvK+KuLziYDp/e67JO4yjr+gy5FtL1yVonNFHTOyrK9GOR12b47eQDaPG8Kv2o4U1k2k5P7EZP9TTO0iSNcrMZawcM8rwPaVKPYEEcwpQ6HY5qs3roZouLokyu5lWtx97sn7osun4Hi4AzSSgOKUdCCi59b+76wjBgGEtGQsE45RgDiGAxmELDgCDBpMSwV4IRh3d2dtml9c2VrmugsvKimb4FeVimycqX19VZkd02TYo0r8+jST0trR/QpumqnpvVALjSbLKXDzPdtBGgaaTj634xu7LAYeqmfjef2FesQf3heZEVpVcaSsD+YfPsu6cdYyxdjEJ2DLIjmjnMpIt+HBI7wj777mlHZWnuTGt2jttdY9Quk1aeaYDJjfsuNp9FfQ3u4HvTPK3ftF/Aba6brWL3wvfTcR90s+w4iznxY815erLmcqfXusx15hwrB26nxbTybowDu7WsIYmO0zF8dR24sc7Q9XcwwLUmeljq1nCnOgeY7UXLzrvWfHrSGmFsqMDWuIbwAfupzV6MumtQVtcfB8PA95KoNq1GPpkea9BWbX3CutQCm0t/EUgKGxNa9Tf9tyhD91b/sJ4UZZNRBC1Bs4EsmkOEWN6Sne/tYFDp2puBFkGzc3BxutR7WSSrMEQ5wGn3CDKemOkNYROtkyZm1o2XexNY0GpmiQ0LYmUWE2YsrNah5sNH97Id4/RlooldlzbkO8DugO7sZ7wJ3qrnLVnzGPA9GUBhAxA6FJ+4GI+jPPHyaAzrnKdlnGkLSmpOEi9CxsO8CDu0HBDTuu2K3XTNJBtwg5en8QLL2F8NMPUIdJzrqrJRsF6Od7vd+R6EoOPpuJdxcFDp/AZMK8rK82aoYWqOWvjblhmg1rFNc9w0fcRL3ADzZTrzeu34XjuqZ45eEYQr/wS002aJHoOZrSh63OQUrWW/5M76ykVHcKQ4HaTxftJ/sKJY5TzeoLq3n+pVZfWOCkqYuKPNPo8PTIxYKRD2HMKjAeMhxlQxzgkmglMXqERAQykoxkIyRiRlD5HlG3DLNYJ6TpSzHhydG1xF+7kyXr6gIjpSlQfHyQfI8hZu1MQ53MS5TZgP0PGaWtIxJMdxWu/n4nVeQ6YBEGwoxhISwcOot93iEitnhyjo7CgFCWYBN4++exwsH+IApvh+hChIyJFSAnPGpLJ+/uju/7aEtGhY5FG2RQhnLe7rcPcPEEH/RYmgg9dO+00SnloFeynp7aIkOYCS5GVTsuVceGpOtjBxue+U0AewoV8UG+unxCJBekL0r/TQtG+XwtkG+IP94FfNbAvkPv/ceRN+HiCFpSQUqZBLJhR3bJCAgzIQC1EoKJWPpQyLb2ZytcUZDfnd5iX/WuuJqa68zd+VUV6Zypwbs1Q8OCbsNWIbbHA9PEBowxcltM42ipejIAqAZSBZcQqJgMJPLsNd6dlwFznn7lp737zs/OiawdG52R784cAPQiYYVwohOGfa2wcWPIBvRmJYKhYKZekgPFCEMRTCaKREW/M7LBu7SKs6yuMd3n++pUoQ9c0byeX5fqDz6ViXS/WC29fMfGDatDVwLbnk9/d0vFEfmk1KcD9zEWyWfadnNazpQU/X//KXaVF/+1Nxo0vjtP9x372/el99D2D8ePmvrxefYef2mxvyq/fTN17X/Ld45XY/3snG5mtY1V8z4ZOKPK3eRO/0P1YjI9hTR2VtKwYOoMs0se7z4+U3nkFgf/1tneLROrUQL+4MbndXNDcYv8e2F8Xe4+sC+zSTRfW6YoxUrGY6X42+dtfGy83w9GU0KapvDwpRzSufb5hi0oUpRgIqBUeYc0oIx/LxotSW87nFZcdBkB5wSqePckof5sgPz4YpDgjkWxIJLAFt3sCNeUCZlBR4oUIS9alLKKnTAt5SQrk4RAcXz1tC2ef/AfhySCg4NQ0RVYCxO6YDAW7OJKcUERIic3wfXyaxf1Zcg/TCQdpzkG5eQ/77235E7d++FojB6LV4zcwfXSH3g50xGkKed9cdZJ/PY3Ro+F6q+mJXecJ7q773cuqojG8xl21jlhUf/qYHmZ5ZnNduFQ+trt+RGq0F+Gevrh9WPr938RzDuphIRUMMDgTngFjoghAmFVeESMZBMA/RxQ9FNoc7266buVUG5GQRbeLLCjHvU5g2vm5O6sge2TC+bz/AG7H9wLp+cvc9wpnRsrSY+elu9vY+AOBzfHRahPYndOt1iujnT7Sf/xcr7uSm/+K46bBASkhUCFccC4VD0ZT1mMQqhK4wJIIogi1VHAUEIRFSrhiVYYjEy+UqfnFcmVCuQDYhR5IpSCSRdLWgjgoQxUogJhnCTDR/C+pgGhAsGJMESQUp0KNVyD8BXcmLowuUxYUAniApxWGbkRplgcwQHMYQ85QiLgh2zG8RRBjCFQGa+WeurHtnxec7s+I/DsqK/1jPiuGeJUIWCqmEYiFnrWs/V1r8OeS923Bvcq6LNufawP3Pg3D/cwvuEstQELiLIIThHH8I7tt+3sWfGnf1hLif7cT994Nw/33bLRDufgrOZKbCUB15C2x/2trEOfN4PuCPcPiT5V9x2h87N7/2fvU/UEsHCEhVilJbCAAAHy4AAFBLAQIUABQACAAIAJKz9TxIVYpSWwgAAB8uAAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAAlQgAAAAA" framePossible = "false" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "true" showAlgebraInput = "false" allowRescaling = "true" />
 +
 +
== Der Satz über die gegenüberliegenden Winkel im Sehnenviereck ==
 +
<ggb_applet width="784" height="1092"  version="3.2" ggbBase64="UEsDBBQACAAIANuA9jwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7V3bctvGGb5ungLDZnKTEYw9AkikZCTZVmxJdSd23U7HMx2QXFGwIIAGQFtU24tOzu/RB2jOJyeZae7dV+q/WJDCkSR4kCk5mrFIgiscvu8/77/rzXfPTj3tqQgjN/C3Wkg3WprwO0HX9XtbrUF8tGG13n3ntc2eCHqiHTraURCeOvFWi+i4JY8P3Hde+91mdBw80xwvGfLQFc+2WkeOF4mWFvVD4XSjYyHi3HFncOZ6rhMO77Ufi04cXXyhTnLH7w/gKnE4gGOd0+6BG40+3kgu2Pfc+Kb71O2KUPOCzlaLM7h1ePdQhLHbcbytFjXUEbzVwoUv4RCR3x4HoXse+LEcfnHyIziiaZF7LgARSx7bvJE86KYYdDy36zq+fJjkPmCQpj1zu/HxVsu0KJxSuL1juFdk2IY6XScIwu79YRSLU+3sryIM5Fm5DmOH6hNBXOIewY0JedvywzD7KTmNeHpfxDHwEmnOmbhArBe63RFS8v2daCfwuuOv+4Hrx7tOPx6ECackPXQ/Hsrzw6VCecPbfs8T6TEMkB+Lzkk7OLuvQCDq1A+G/eRPkvtp93YDLwi1UMLLYED62lavyRh5o+NRRjLGSEak55AnHX+PbJyMSF7b6jUZ5bm+urX0wdHooZExuowbafKARBFEcfzwntMWQG1LG/hufDD6ACJwkj4qUn/wh8FpG3QgKwTjc6JlnXPzRkF8Nk9E6AtPyYgP1A6CQaQ9lcKorpXcSFd03FP4qL5IIXEkXX+CG1BHu6IXitGNKw1SgCXf5uSwcHjzxugm5D1EcK+dGEwBPE8sn0VqagxaIt91nVgeSUaenjp+V/OdUzhyx4/hOUGLW/IqrtRczTG2WmfbACGcAG21hsnb5C6CQTwacKhuID2bVC9PnArQvTiRs0RMx3gftsaGJkhsRpGQC+rgQbpu8hRy+L10tJdev/14LHGcJgInX9rqxfH6xw5AM1I6zxmCgcmimFzt3tFRJGLtbKu1AWwPQatw5tvDoFuBfCSHK92GP0venCuLm4xRSinNSfKXJJUYhUgJ8z8m2FThXQR552+oCcxy+BSgM7KZBRNhZQSS19QIzIpnCTHHB5lXFMaiL08gtaovRDd1UnFqirQ+nDIxbJnbusCbpngvCPeuG3Y8UcD7UMl2CnAO9JPJkIOAup0xnietvJGLj8GW+CKKEkscZ23uAuLvlhnLG+Tmsk+4kmXKJ1E504OB0xT+U7jRIIw07cxIWR4aI+pGR87QSHmGKD10jjK8gtSE7pm2PRq/PRq1jaWyJo52m6Rn3aajk22zzIOLJ7664UgZdJC7jnsEjDVWyZOSZGw3UcbtsioqP1/ifFmKmDVsdsKuCoBWracbWOeGgWwDmchG1DZNqmSL6AaxmUkRs7FtmcxmyzabZY52GhnMl8iRsm34Uiwp0U2IaLlJiI1s2+am4gfpQBY3KIPgFyGLGHz1/Ow24Wf30vlZGQVYxzaxqE1AOxghiBAVe+jY5Db8s7BhcsTx6hm42YSBmy/TimGU+qhLsmLAC0OmaTAMpoywlCDDZoQzacbAvhnWYgR5w17gFyjaTmMReMFS5jWHpCzleIO8w4PEDqnRjhrdUaO78AL+UEyjVl1+RN74jPPFMDlBqAssGUkkgaFSpIKaKGIW0/xDRaInP41vxHk5T9PQrGTkDumMIpvbzDIsC2yBct1cJ4aNmckQ/FCbpq6T6YhbBoynjBHMaCnLnhSnFUIj97TvuR03HkuaJ9VjnBGCSpUT2hMh+rKScM9/EDp+JCtKakwmUZ6RqM5VI4rqie3GGFymZdo2GXtRxDAybY5MyjkjfEQVs2yOKdh2YhqI8atLVfeKUQXGxQLAMTJMm9kGI2nAQ3ULm4SbhoXBogOLI6aogSnj3ObgopnFri5T4ooxxXVEICiyITQFLbK4Na6wcM5NDPpkIoIpJnRElQnDGTVsgrhBGFlnqvLO/35KVWUhYrvk7tuTfXmR+PZSChG5yGjGQtx8lYgJMlGVNg5r0szztAhwPaRgpyQFR82k4Oj6SEFVcjqsTGXPs9e56iKwWxKBXjMR6F0fEdioyI6H1an0tZKBcu533EwGjq+VDJQS8GF1tr7+MiDO+iHcicQxxfiBOIshnIIvtlpvPBkE8ds3AaD7Tnyu/fq8DW+7rtB6oif85KPnyrdd4Wt/dv0T4WnuqXZfHPvCf+qKEHJ5dY7kunkRieFCrfxV5woCl0RwFDthnNSrtDS3IpBRZX4Slk0dG9kflC2+TAcW54CVoL6lvfF7ZLx9x9cei64oYKdFLuhnHeB3fBj5TKEeDfp9de1f/x3qs2OO1wxzmpYamNUMWJID9mEQOoMoEvH5wO+9NTsa5KWikTSKRCJ0jy4aXpKGiQ0Qm2jUYFEFHNMNWpZVkGDeDEWaQ/F17VHwVAqcL/6+vbN785/a65obxZpw/XlVnM4O8IrnHUvou9GB80D8JW8q86SoWy1xgis5sXTbZhlLQVJObCtrP3AtQTkg20HgCeeiTuomOMKtDkTJ/l+S+GYnbtXMEcITZm6nCx/LCd+OOHYG/biZ/rIrq7+IZhXYShMLQNbIi1C1sOQjuaT5qhDH7YyS+qRGXw7nXnw+OZ5LOoTGOMLogvwhnWADQ3LMTJNYEAZZU4O5aS0Gj+uIQkaZKtaMqpmCMSfsXMyjWKODnhc8e18ceeIswXnW8LqKlOI0S4mULxqR8kWRFKpDugppCbUtYhKM6eVy0mg6ZfmcjJV9Lk3ZrdWULxuR8mWZFMqRhTFDiGALUfZKKcqcpGyP0tA6TfmqESlflc0XRzZm3KLUtAgl6DdNqXbSvBAh/kPTHiWPAe/e1ODXo54DFMCbLQ1Zxn//o72e5Ddy5KO2iC/GdYUX58fN7Ob5olFkLTmXHUXSKUGkrTNeDgyojgnNh/vzBJGP1zKI5BN6K6bLp5mvXEDm/IbTD6K31e9brt8TbYgpswcbxJfm1Y0vkV0SI6RbuaQx3ww3HWsrh/WhG8fC6w/8k1gbgDF/3+m6wtdA50OncxwLf3aYrUX1e3VlwBnSwWoKbN1A2XSQjigws0cNOp8qe+ulyqpLCuMJbezN/P9hLn0pT0q9+LqR//+6CBfTObNNwjAiCNvYIA2gqxbB0zKuxXUtctY6BRfNLIdN2mtyIYC5irjsMJfBlKeMX3zTiJdvirwYOgdXBxpiU4MZkFhWBWYvk5hsh7OSelbd4bwi3uZLPA+nJZ7fNqLt27I6EYticCi2bJTghlmV5CxMm6Tpovkj29F5xdVpt9bMfdeIl+/K6mTZlmUxE1GTgcGzV6JO152XiprA9414+b5CX0BJDEs28lkUVRZqlmblUl7mM3IqbCFXiLT6msEPjUj7oaxMNsbUBNqQYTPK8Up9U3PWrgYvFTHDj414+bGsTMziEC4wCkky4shcBS3IwLmQIfl8xYm5mQuyD8vEPG9EzPPfiFmg0GaXChnj4oXmueJIhDLNjrSTwO8BZn4stB0nciPVDzB7rm1fw1xbljtYulC3UOKobyuYmF+fLppfrxi7Cw/N08l/zBeajEVGTv7OB9p5sqi2QbEMTjEZnmkl9ArtXk3fCcgLKTT1qJbvXGlmUrPPhPVqt2bfaaDuSddiuSDCo80GaNPV75PguX258GRCWdW9iy9lQbI1N3Z5t/1+EDtx0W/fUn77xdfKcd8uOe5bqtDdbOuGiz+ai6C5N8OY1ICNdAi4IXW1OSEUI2u83olzyimSjQcEYU7MRTCuCo1SiG8rhHN45kOknxqFSD9NrXctngn6S613XbAzmrNsHCLJCdCFKlrVSjDmRCnDt1OUQf2eQyHSP1wbpbB0ZBOTy6VlxETpmgS5AsWgPCnAUdtijOPl60Qe8bxuXMCb14+fG+nHz9MKWJa9Cv1YRgFrVeoxQ243ST9SXpSOfD+TjizgPAonWBudobpNwM5CbsAQNaiFx+tmCbZtSi25ppaxhVbWT1CZLAlValPvXn5ppD6/TC1Z8VW6l0VKVuvpXQr0KC36sU6L9ppozN76aAfRCzkzHseu+XbUhTZnmaofle5lr4Ty//7VRCdgdDnksrlp2iYn3DJtPtomcLk6sZyy1GVqRU1dIL80aE94be1NbcdzBvACqgO/98Jfn/ujtq4G5YJpy3+mlQsqUF9VuYCiQvuVVA+mz1UtKJaa/NWUmpZWTLnIoKmlNjEgyF6o1JRfFPXMjaJmdaZpa5jWSHDSrVQ2uE7zfT/1rVcTfMZ761xaarAP1SrqSneuFzZowS0nHyabIRbc7XvKtd4p+dTBZJeqdlYcIzlY8o6TK129O94ylaeANlugm9n1Np2C6ICKi8h1/JLKJ0btvcm8JEt0vdqa3qAuNZsjGVufABMtTaxr4csHj2UY7zYB8O4aQVdTAjWLJdAVoppNX2sFdClVtnUT3OpaGy/W2laB/e06vG83x/j2bLjWtAdPqB4vBO3lmISq3LIM6n4TOPfXR0BrClvmMgtbdQDv1YG511xC99ZN8+tqIlJacz90EWgPIAQpopq1thnnn0O4PxlbGdmMMetfpWhtg+iMYRMRbloWZEkGurWRtnZYBeDVSnqrwMeytjis5+zQDcNSZH1X8dUvxx3NdeHuuulCKQZJN9eGsI5A9MEsjiAWsUxiL6ILlbhWRQc1SB80wfhgfdAtxhijOW5pgRgxqGEyUANKF7LhleDu10G531xo99dNaIuekY1llnETLAsc5aZJ6aqmSdMq9vgDTnOQfC37g8kYF2rZH0xtH1h83UXQKAB8+aXsOXtf71bwU5PJ5Bn7sBFjH06d0K7aN2Nhxq74hPaMU0UVFO6XCfuoEWEfXcIU6gQVW8cp1DkJ26+gZ69Oqz5uRNLHlzCnV0HS1ZvTm8EO1qpSXe7xv08acfXJVJ+1+LKAV8RnHVTFFHUsfdqIpU+n+Slz8carV8NP7dcq1EGZpM8akfTZVN/0m2uaiaO9+vihro/x82n9cMUN09L2t0lO6tXzUTPwVb0t8UxVsSeTGSpuUfxkyf9RwcwcXd+q2WVuWZzfARZraWsSHjUn4bQ9CY8blAhv1qA0bXfYaX0mq6O+okGJjctG2JyxuaTYiRSsphNpae022U4kVY6HyKQepuyD38j+77Ty8+h/pH7n/1BLBwiiOmLODQ8AAMN6AABQSwECFAAUAAgACADbgPY8ojpizg0PAADDegAADAAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAABAAEAOgAAAEcPAAAAAA==" framePossible = "false" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" />

Aktuelle Version vom 18. Juli 2012, 11:31 Uhr

Inhaltsverzeichnis

Begriff des Sehnenvierecks

Definition XV.1: (Kreissehne)
Es sei \ k ein Kreis. Die Strecke \ \overline{AB} ist eine Sehen des Kreises \ k : \Leftrightarrow ... .

wenn die Endpunkte der Strecke \ \overline{AB} auf dem Kreis liegen. --Nicola 19:22, 25. Jul. 2010 (UTC)

Definition XV.2: (die Durchmesser eines Kreises)
Ist eine Sehne, die durch den Mittelpunkt zur Teilmenge hat.

--Nicola 19:22, 25. Jul. 2010 (UTC)
Vorschlag--TimoRR 15:56, 26. Jul. 2010 (UTC): Der Durchmesser eines Kreises ist eine Sehne von k, die durch den Mittelpunkt von k geht.

Definition XV.3: (Radien eines Kreises)
Das können Sie selbst. Hinweis: Jeder Kreis hat unendlich viele Radien.
Der Radius ist die Strecke \ \overline{MP}, wenn M Mittelpunkt des Kreises k ist und P ein beliebiger Punkt von k. --Nicola 19:22, 25. Jul. 2010 (UTC)
Definition XV.4: (Sehnenviereck)
Ein Viereck, dessen Eckpunkte auf demselben Kreis k liegen.
Ein Viereck, dessen Seiten Sehnen desselben Kreises k sind.

--Nicola 19:22, 25. Jul. 2010 (UTC)

Der Satz über die gegenüberliegenden Winkel im Sehnenviereck

Die Satzfindung

sehr speziell: Quadrate

Jedes Quadrat hat einen Umkreis und ist somit ein Sehnenviereck.

Quadrat als Sehnenviereck.png

weniger speziell, aber immer noch ziemlich speziell: Rechtecke

Jedes Rechteck ist ein Sehnenviereck.

noch allgemeiner, aber immer noch ziemlich speziell: gleichschenklige Trapeze

Jedes gleichschenklige Trapez ist ein Sehnenviereck.

allgemeines Sehnenviereck

Ausgangslage: \ \overline{ABCD} ist ein gleichschenkliges Trapez.

Arbeitsauftrag: Bewegen Sie den Punkt \ C auf dem Kreis. Beobachten Sie, wie sich der rote und der blaue Winkel verändern. Was vermuten Sie bezüglich der Größe von \ \gamma? Was vermuten Sie hinsichtlich der Größen der gegenüberliegenden Winkel im Sehnenviereck?


Der Satz über die gegenüberliegenden Winkel im Sehnenviereck