Lösung von Zusatzaufgabe 2.5P (WS 12 13): Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
Zeile 1: Zeile 1:
 
Welche Definition für Kreis ist richtig? Warum (nicht)?<br />
 
Welche Definition für Kreis ist richtig? Warum (nicht)?<br />
  
* Sei <math>M</math> ein Punkt und <math>P</math> eine Menge, deren Elemente Punkte sind. Wenn gilt: <math>\left| MP \right|</math> ist konstant, so ist <math>P</math> ein Kreis mit Mittelpunkt <math>M</math>.
+
* Sei <math>M</math> ein Punkt und <math>P</math> eine Menge, deren Elemente Punkte sind. Wenn gilt: <math>\left| MP \right|</math> ist konstant, so ist <math>P</math> ein Kreis mit Mittelpunkt <math>M</math>.<br />
 +
<br />
 +
Die Definition ist nicht richtig, da sie nicht für eine Ebene definiert ist und somit z.B. eine Kugel oder Halbkugel nicht ausschließt.--[[Benutzer:Unicycle|Unicycle]] 15:47, 15. Nov. 2012 (CET)
 +
<br />
 
* Sei <math>M</math> ein Punkt und <math>P</math> eine Punktmenge. Wenn gilt: <math>X\in P:\left| XM \right|=r</math>, dann ist <math>P</math> ein Kreis.
 
* Sei <math>M</math> ein Punkt und <math>P</math> eine Punktmenge. Wenn gilt: <math>X\in P:\left| XM \right|=r</math>, dann ist <math>P</math> ein Kreis.
 
* Sei <math>M</math> ein Punkt in der Ebene <math>E</math> und <math>P</math> eine Punktmenge. Wenn <math>P</math> alle Punkte <math>X</math> enthält für die gilt∶ <math>\left| XM \right|=r,r\in  \mathbb{R}^{+}</math> und <math>X\in E </math>, dann ist <math>P</math> ein Kreis mit dem Mittelpunkt <math>M</math>.
 
* Sei <math>M</math> ein Punkt in der Ebene <math>E</math> und <math>P</math> eine Punktmenge. Wenn <math>P</math> alle Punkte <math>X</math> enthält für die gilt∶ <math>\left| XM \right|=r,r\in  \mathbb{R}^{+}</math> und <math>X\in E </math>, dann ist <math>P</math> ein Kreis mit dem Mittelpunkt <math>M</math>.

Version vom 15. November 2012, 15:47 Uhr

Welche Definition für Kreis ist richtig? Warum (nicht)?

  • Sei M ein Punkt und P eine Menge, deren Elemente Punkte sind. Wenn gilt: \left| MP \right| ist konstant, so ist P ein Kreis mit Mittelpunkt M.


Die Definition ist nicht richtig, da sie nicht für eine Ebene definiert ist und somit z.B. eine Kugel oder Halbkugel nicht ausschließt.--Unicycle 15:47, 15. Nov. 2012 (CET)

  • Sei M ein Punkt und P eine Punktmenge. Wenn gilt: X\in P:\left| XM \right|=r, dann ist P ein Kreis.
  • Sei M ein Punkt in der Ebene E und P eine Punktmenge. Wenn P alle Punkte X enthält für die gilt∶ \left| XM \right|=r,r\in  \mathbb{R}^{+} und X\in E , dann ist P ein Kreis mit dem Mittelpunkt M.
  • Sei M ein Punkt in der Ebene E und P eine Punktmenge. Wenn P genau alle Punkte X enthält für die gilt∶ \left| XM \right|=r,r\in  \mathbb{R}^{+} und X\in E , dann ist P ein Kreis mit dem Mittelpunkt M.
  • Sei M ein Punkt in der Ebene E und P eine Menge, deren Elemente Punkte sind. Wenn für alle X \in P gilt∶ \left| XM \right|=r,r\in  \mathbb{R}^{+}, dann ist P ein Kreis.
  • Sei M ein Punkt und P eine Menge, deren Elemente Punkte sind. Alle Elemente von P liegen in ein und derselben Ebene wie M. Wenn gilt: \left| MP \right| ist konstant, so ist P ein Kreis mit Mittelpunkt M.