Lösung Aufgabe 11.02 WS 12 13: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Was wäre wenn nicht)
(Was wäre wenn nicht)
Zeile 44: Zeile 44:
 
Der Rest schreiben wir als kleinen Aufsatz:<br /><br />
 
Der Rest schreiben wir als kleinen Aufsatz:<br /><br />
  
Die beiden Winkel <math>\beta</math> und <math>\angle C^*BA</math> sind also nach der bisherigen Beweisführung kongruent bzw. haben dieselbe Größe. <br />Weil sie auch den Schenkel <math>BA^+</math> gemeinsam haben und <math>C</math> und <math>C^*</math> in derselben Halbebene bzgl. <math>AB</math> liegen, <br />müssen die die Schenkel <math>BC^+</math> und <math>BC^{*+}</math> nach dem ... identisch sein.<br />
+
Die beiden Winkel <math>\beta</math> und <math>\angle C^*BA</math> sind also nach der bisherigen Beweisführung kongruent bzw. haben dieselbe Größe. <br />Weil sie auch den Schenkel <math>BA^+</math> gemeinsam haben und <math>C</math> und <math>C^*</math> in derselben Halbebene bzgl. <math>AB</math> liegen, <br />müssen die die Schenkel <math>BC^+</math> und <math>BC^{*+}</math> nach dem ... [[Winkelkonstruktionsaxiom]] --[[Benutzer:B.....|B.....]] 16:18, 24. Jan. 2013 (CET)identisch sein.<br />
 
Wegen dieser Identität der beiden Strahlen <math>BC^+</math> und <math>BC^{*+}</math> und weil <math>C</math>
 
Wegen dieser Identität der beiden Strahlen <math>BC^+</math> und <math>BC^{*+}</math> und weil <math>C</math>
der Schnittpunkt von <math>BC</math> mit <math>AC</math> und <math>C^{*}</math> der Schnittpunkt von <math>BC^*</math> mit <math>AC</math> ist, sind  ..... identisch.
+
der Schnittpunkt von <math>BC</math> mit <math>AC</math> und <math>C^{*}</math> der Schnittpunkt von <math>BC^*</math> mit <math>AC</math> ist, sind  ..... [[C* =C]] --[[Benutzer:B.....|B.....]] 16:18, 24. Jan. 2013 (CET)identisch.
  
 
Wegen dieser Identität geht die Mittelsenkrechte <math>m_c</math> durch den Punkt <math>C</math>. Wir haben uns schon überlegt, dass in diesem Fall <math>\overline{AC} \tilde= \overline{BC}</math> gilt. q.e.d.
 
Wegen dieser Identität geht die Mittelsenkrechte <math>m_c</math> durch den Punkt <math>C</math>. Wir haben uns schon überlegt, dass in diesem Fall <math>\overline{AC} \tilde= \overline{BC}</math> gilt. q.e.d.

Version vom 24. Januar 2013, 16:18 Uhr

Inhaltsverzeichnis

Aufgabe 11.02

Es seien A, B, C drei nicht kollineare Punkte. Die Winkel \alpha=\angle CAB und  \beta= \angle CBA seien kongruent zueinander.
Behauptung:

\overline{AC} \tilde= \overline{BC}


Lösung User ...

Ergänzen Sie den folgenden Beweis

(H) Hilfskonstruktion:

m_c sei die Mittelsenkrechte der Strecke \overline{AB}.
Begründung, dass die Hilfskonstruktion angewendet werden kann:

Existens- und Eindeutigkeit Mittelsenkrechte (Def. Mittelsenkrechte) --B..... 16:08, 24. Jan. 2013 (CET)


.................................................

Was wäre wenn

Wenn die Mittelsenkrechte m_c durch C gehen würde, wären die Strecken \overline{CA} und \overline{CB} kongruent zueinander.
Begründung hierfür:

Mittelsenkrechtenkriterium --B..... 16:12, 24. Jan. 2013 (CET)
..................................................

Was wäre wenn nicht

Annahme: C \not \in m_c


Nr. Beweischritt Begründung
(1) m_c schneidet o.B.d.A. \overline{CA} in einem Punkt, den wir c^* nennen wollen ...... An., Axiom von Pasch
(2) \overline{C^*A} \tilde= \overline{C^*B} ... 1), Mittelsenkrechtenkriterium
(3) \alpha \tilde= \angle C^*BA ...2), Basiswinkelsatz
(4) \beta \tilde= \alpha ... Vor.
(5) \beta \tilde= \angle C^*BA ... 4),3)
--B..... 16:16, 24. Jan. 2013 (CET)

Der Rest schreiben wir als kleinen Aufsatz:

Die beiden Winkel \beta und \angle C^*BA sind also nach der bisherigen Beweisführung kongruent bzw. haben dieselbe Größe.
Weil sie auch den Schenkel BA^+ gemeinsam haben und C und C^* in derselben Halbebene bzgl. AB liegen,
müssen die die Schenkel BC^+ und BC^{*+} nach dem ... Winkelkonstruktionsaxiom --B..... 16:18, 24. Jan. 2013 (CET)identisch sein.
Wegen dieser Identität der beiden Strahlen BC^+ und BC^{*+} und weil C der Schnittpunkt von BC mit AC und C^{*} der Schnittpunkt von BC^* mit AC ist, sind ..... C* =C --B..... 16:18, 24. Jan. 2013 (CET)identisch.

Wegen dieser Identität geht die Mittelsenkrechte m_c durch den Punkt C. Wir haben uns schon überlegt, dass in diesem Fall \overline{AC} \tilde= \overline{BC} gilt. q.e.d.

Lösung User ...

Ergänzen Sie den folgenden Beweis

(H) Hilfskonstruktion:

m_c sei die Mittelsenkrechte der Strecke \overline{AB}.
Begründung, dass die Hilfskonstruktion angewendet werden kann:
.................................................

Was wäre wenn

Wenn die Mittelsenkrechte m_c durch C gehen würde, wären die Strecken \overline{CA} und \overline{CB} kongruent zueinander.
Begründung hierfür:
..................................................

Was wäre wenn nicht

Annahme: C \not \in m_c


Nr. Beweischritt Begründung
(1) m_c schneidet o.B.d.A. \overline{CA} in einem Punkt, den wir c^* nennen wollen ...
(2) \overline{C^*A} \tilde= \overline{C^*B} ...
(3) \alpha \tilde= \angle C^*BA ...
(4) \beta \tilde= \alpha ...
(5) \beta \tilde= \angle C^*BA ...

Der Rest schreiben wir als kleinen Aufsatz:

Die beiden Winkel \beta und \angle C^*BA sind also nach der bisherigen Beweisführung kongruent bzw. haben dieselbe Größe.
Weil sie auch den Schenkel BA^+ gemeinsam haben und C und C^* in derselben Halbebene bzgl. AB liegen,
müssen die die Schenkel BC^+ und BC^{*+} nach dem ... identisch sein.
Wegen dieser Identität der beiden Strahlen BC^+ und BC^{*+} und weil C der Schnittpunkt von BC mit AC und C^{*} der Schnittpunkt von BC^* mit AC ist, sind ..... identisch.

Wegen dieser Identität geht die Mittelsenkrechte m_c durch den Punkt C. Wir haben uns schon überlegt, dass in diesem Fall \overline{AC} \tilde= \overline{BC} gilt. q.e.d.