Lösung von Aufgabe 3.1 (SoSe 13 P): Unterschied zwischen den Versionen
Aus Geometrie-Wiki
(Die Seite wurde neu angelegt: „Der Basiswinkelsatz lautet: Im gleichschenkligen Dreieck sind die Basiswinkel kongruent zueinander.<br /> a) Wie lautet die Umkehrung des Basiswinkelsatzes?<br />…“) |
|||
Zeile 1: | Zeile 1: | ||
Der Basiswinkelsatz lautet: Im gleichschenkligen Dreieck sind die Basiswinkel kongruent zueinander.<br /> | Der Basiswinkelsatz lautet: Im gleichschenkligen Dreieck sind die Basiswinkel kongruent zueinander.<br /> | ||
a) Wie lautet die Umkehrung des Basiswinkelsatzes?<br /> | a) Wie lautet die Umkehrung des Basiswinkelsatzes?<br /> | ||
+ | *Wenn in einem Dreieck die Basiswinkel kongruent zueinander sind, dann handelt es sich um ein gleichschenkliges Dreieck.--[[Benutzer:Nolessonlearned|Nolessonlearned]] 12:15, 6. Mai 2013 (CEST)<br /> | ||
+ | |||
+ | |||
b) Fassen Sie den Basiswinkelsatz und seine Umkehrung zu einem Satz zusammen. | b) Fassen Sie den Basiswinkelsatz und seine Umkehrung zu einem Satz zusammen. | ||
<br /> | <br /> | ||
[[Category:Einführung_P]] | [[Category:Einführung_P]] |
Version vom 6. Mai 2013, 11:15 Uhr
Der Basiswinkelsatz lautet: Im gleichschenkligen Dreieck sind die Basiswinkel kongruent zueinander.
a) Wie lautet die Umkehrung des Basiswinkelsatzes?
- Wenn in einem Dreieck die Basiswinkel kongruent zueinander sind, dann handelt es sich um ein gleichschenkliges Dreieck.--Nolessonlearned 12:15, 6. Mai 2013 (CEST)
b) Fassen Sie den Basiswinkelsatz und seine Umkehrung zu einem Satz zusammen.