Lösung von Aufgabe 3.2 (SoSe 13 P): Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: „'''Satz: In einem Dreieck <math>\overline{ABC} </math> mit |AC|< |BC| < |AB| sind die Winkel α und β nicht kongruent zueinander. '''<br /><br /> '''a) Welche…“)
 
Zeile 9: Zeile 9:
 
Bew: Da nach Voraussetzung |AC|  ≠ |BC| gilt nach dem Basiswinkelsatz |α|  ≠ |β|. Damit ist der Satz bewiesen.
 
Bew: Da nach Voraussetzung |AC|  ≠ |BC| gilt nach dem Basiswinkelsatz |α|  ≠ |β|. Damit ist der Satz bewiesen.
 
<br /><br />
 
<br /><br />
 +
*Dies ist kein korrekter Beweis, da hier nicht auf die Kontraposition eingegangen wird.--[[Benutzer:Nolessonlearned|Nolessonlearned]] 12:46, 6. Mai 2013 (CEST)<br />
 +
 +
 
Beweis 2)  
 
Beweis 2)  
 
Sei <math>\overline{ABC} </math> ein Dreieck.<br />
 
Sei <math>\overline{ABC} </math> ein Dreieck.<br />

Version vom 6. Mai 2013, 11:46 Uhr

Satz: In einem Dreieck \overline{ABC} mit |AC|< |BC| < |AB| sind die Winkel α und β nicht kongruent zueinander.

a) Welcher Beweis ist korrekt? Begründen Sie ausführlich! (Der Basiswinkelsatz und seine Umkehrung seien bereits bewiesen.)

Beweis 1) Sei \overline{ABC} ein Dreieck.
Vor: |AC|< |BC| < |AB|.
Beh: |α| ≠ |β|
Bew: Da nach Voraussetzung |AC| ≠ |BC| gilt nach dem Basiswinkelsatz |α| ≠ |β|. Damit ist der Satz bewiesen.

  • Dies ist kein korrekter Beweis, da hier nicht auf die Kontraposition eingegangen wird.--Nolessonlearned 12:46, 6. Mai 2013 (CEST)


Beweis 2) Sei \overline{ABC} ein Dreieck.
Vor: |AC|< |BC| < |AB|.
Beh: |α| ≠ |β|
Bew: Nach Umkehrung des Basiswinkelsatzes gilt: Wenn |α|= |β| dann gilt |AC|= |BC|. Die Kontraposition der Umkehrung lautet also: Wenn |AC| ≠ |BC| dann gilt |α| ≠ |β|. Da die Kontraposition gleichwertig ist, kann man auch diese beweisen. Da nach Voraussetzung gilt: |AC|< |BC|, d.h. |AC| ≠ |BC|, kann nach Kontraposition der Umkehrung des Basiswinkelsatzes direkt gefolgert werden: |α| ≠ |β|. Damit ist der Satz bewiesen.

b) Beweisen Sie den Satz indirekt mit Widerspruch.