Der Basiswinkelsatz SoSe 13: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Satz VIII.1: (Basiswinkelsatz))
(Satz VIII.1: (Basiswinkelsatz))
Zeile 23: Zeile 23:
 
| [[Bild:gleichschenklig_2.png| 200 px]]
 
| [[Bild:gleichschenklig_2.png| 200 px]]
 
| <math>\left| AC \right|=\left| BC \right|</math>  
 
| <math>\left| AC \right|=\left| BC \right|</math>  
| Voraussetzung
+
| Voraussetzung --[[Benutzer:Nolessonlearned|Nolessonlearned]] 12:36, 2. Jul. 2013 (CEST)
 
|-
 
|-
 
| (2)
 
| (2)

Version vom 2. Juli 2013, 11:36 Uhr

Inhaltsverzeichnis

Der Basiswinkelsatz

Gleichschenklige Dreiecke

Definition VIII.1 : (gleichschenkliges Dreieck)

Das können sie selbst. Bringen Sie in der Definition die Begriffe Basis, Basiswinkel und Schenkel eines gleichschenkligen Dreiecks unter.

Übungsaufgabe

Der Basiswinkelsatz

Satz VIII.1: (Basiswinkelsatz)
In jedem gleichschenkligen Dreieck sind die Basiswinkel kongruent zueinander.

Beweis:
Voraussetzung: Das Dreieck ist gleichschenklig: |AC| = |BC|--Nolessonlearned 12:34, 2. Jul. 2013 (CEST):
Behauptung: Die Basiswinkel sind kongruent zueinander: |α| = |β| --Nolessonlearned 12:34, 2. Jul. 2013 (CEST):

Nr. Skizze Beweisschritt Begründung
(1) Gleichschenklig 2.png \left| AC \right|=\left| BC \right| Voraussetzung --Nolessonlearned 12:36, 2. Jul. 2013 (CEST)
(2)

Gleichschenklig 3.png
C\in m mit m ist Mittelsenkrechte von \overline{AB} Begründung?
(3)


B=S_{m}(A) Begründung?
(4)


C=S_{m}(C) Begründung?
(5)


M=S_{m}(M) Begründung?
(6)


\angle MAC \tilde {=} \angle MBC  Begründung?