Lösung von Aufgabe 11.7: Unterschied zwischen den Versionen
Aus Geometrie-Wiki
K (Die Seite wurde neu angelegt: Satz VII.6a:<br /> Wenn ein Punkt <math> P </math> zu den Endpunkten der Strecke <math> \overline{AB} </math> jeweils ein und denselben Abstand hat, so ist er ein Punkt...) |
(→Versuch 1:) |
||
Zeile 32: | Zeile 32: | ||
! style="background: #FFDDDD;"|(V) | ! style="background: #FFDDDD;"|(V) | ||
| <math>| \angle AMP| = | \angle BMP|</math> | | <math>| \angle AMP| = | \angle BMP|</math> | ||
− | | (Def Dreieckskongruenz) | + | | (Def Dreieckskongruenz) (IV) |
|- | |- | ||
! style="background: #FFDDDD;"|(VI) | ! style="background: #FFDDDD;"|(VI) | ||
| <math> PM = m </math> | | <math> PM = m </math> | ||
− | | (Axiom I.1) | + | | (Axiom I.1), (V) |
|} | |} | ||
--> <math>P \in m </math>, die Behauptung ist wahr.<br /> qed --[[Benutzer:Löwenzahn|Löwenzahn]] 13:52, 4. Jul. 2010 (UTC) | --> <math>P \in m </math>, die Behauptung ist wahr.<br /> qed --[[Benutzer:Löwenzahn|Löwenzahn]] 13:52, 4. Jul. 2010 (UTC) |
Version vom 4. Juli 2010, 15:58 Uhr
Satz VII.6a:
Wenn ein Punkt zu den Endpunkten der Strecke
jeweils ein und denselben Abstand hat, so ist er ein Punkt der Mittelsenkrechten von
.
Versuch 1:
VSS: Punkt P, ,
, Mittelsenkrechte m
Beh:
Nr. | Beweisschritt | Begründung |
---|---|---|
(I) | ![]() |
(VSS) |
(II) | es existiert ein Punkt ![]() |
(Existenz und Eindeutigkeit Mittelpunkt) |
(III) | ![]() |
Basiswinkelsatz |
(IV) | ![]() |
(I), (II), (III), (SWS) |
(V) | ![]() |
(Def Dreieckskongruenz) (IV) |
(VI) | ![]() |
(Axiom I.1), (V) |
--> , die Behauptung ist wahr.
qed --Löwenzahn 13:52, 4. Jul. 2010 (UTC)