Lösung von Aufgabe 11.8: Unterschied zwischen den Versionen
Aus Geometrie-Wiki
(→Lösung 1) |
|||
Zeile 16: | Zeile 16: | ||
! style="background: #FFDDDD;"|(I) | ! style="background: #FFDDDD;"|(I) | ||
| <math>\overline{AM} \cong \overline{BM}</math> | | <math>\overline{AM} \cong \overline{BM}</math> | ||
− | | (Existenz und Eindeutigkeit Mittelpunkt) | + | | (Existenz und Eindeutigkeit Mittelpunkt), (Def. Mittelsenkrechte) |
|- | |- | ||
! style="background: #FFDDDD;"|(II) | ! style="background: #FFDDDD;"|(II) |
Version vom 9. Juli 2010, 16:33 Uhr
Beweisen Sie Satz VII.6 b:
Wenn ein Punkt zur Mittelsenkrechten der Strecke
gehört, dann hat er zu den Punkten
und
ein und denselben Abstand.
Lösung 1
VSS: m ist die Mittelsenkrechte von ,
Beh:
Nr. | Beweisschritt | Begründung |
---|---|---|
(I) | ![]() |
(Existenz und Eindeutigkeit Mittelpunkt), (Def. Mittelsenkrechte) |
(II) | es existiert ein Punkt ![]() |
(VSS) |
(III) | ![]() |
Definition Mittelsenkrechte |
(IV) | ![]() |
trivial |
(V) | ![]() |
(I), (III), (IV), (SWS) |
(VI) | ![]() |
(V), (Def Dreieckskongruenz) |
--> Beh ist wahr.
qed --Löwenzahn 09:36, 3. Jul. 2010 (UTC)