Strecken, Pfeile und Pfeilklassen SoSe 2017: Unterschied zwischen den Versionen
*m.g.* (Diskussion | Beiträge) (→Die Gruppe der Pfeilklassen) |
*m.g.* (Diskussion | Beiträge) (→Die Gruppe der Pfeilklassen) |
||
| Zeile 39: | Zeile 39: | ||
=Die Gruppe der Pfeilklassen= | =Die Gruppe der Pfeilklassen= | ||
'''Satz:''': (Gruppe der Pfeilklassen) | '''Satz:''': (Gruppe der Pfeilklassen) | ||
| − | + | :Die Struktur <math>\left[\overrightarrow{\mathbb{P}}, \oplus\right]</math> ist eine abelsche Gruppe:<br /> | |
| − | + | ||
# Abgeschlossenheit: <math>\forall \overrightarrow{a}, \overrightarrow{b} \in \overrightarrow{\mathbb{P}}: \overrightarrow{a} \oplus \overrightarrow{b} \in \overrightarrow{\mathbb{P}}</math> | # Abgeschlossenheit: <math>\forall \overrightarrow{a}, \overrightarrow{b} \in \overrightarrow{\mathbb{P}}: \overrightarrow{a} \oplus \overrightarrow{b} \in \overrightarrow{\mathbb{P}}</math> | ||
# Assoziativität: <math>\forall \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \in \overrightarrow{\mathbb{P}} :( \overrightarrow{a} \oplus \overrightarrow{b}) \oplus \overrightarrow{c} = \overrightarrow{a} \oplus ( \overrightarrow{b} \oplus \overrightarrow{c})</math> | # Assoziativität: <math>\forall \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \in \overrightarrow{\mathbb{P}} :( \overrightarrow{a} \oplus \overrightarrow{b}) \oplus \overrightarrow{c} = \overrightarrow{a} \oplus ( \overrightarrow{b} \oplus \overrightarrow{c})</math> | ||
Version vom 4. Juni 2017, 12:41 Uhr
StreckenDefinitionDefinition: (Strecke
BemerkungIm Gegensatz zur Definition des Begriffs Strecke in der Einführung in die Geometrie lassen wir hier zu, dass die Punkte gerichtete Strecken bzw PfeileDefinition: (gerichtete Strecke
PfeilklassenDefinition: (Pfeilgleichheit)
Satz: (Pfeilgleichheit ist ÄR)
Beweis: Übungsaufgabe Definition: (Pfeilklasse)
Hinweis: Jede Pfeilklasse ist durch Angabe eines ihrer Repräsentanten eindeutig bestimmt. Ob wir mit Addition von PfeilklassenDefinition: (Addition von Pfeilklassen)
Satz: (Wohldefiniertheit der Operation
Beweis : ÜA Die Pfeilklasse
|
)
und
zwei beliebige Punkte. Unter der Strecke
.
)
und nennen
stehen in der Relation pfeilgleich zueinander, wenn
ein Parallelogramm ist. In Zeichen:

meint einen bestimmten Pfeil und
bezeichnet die Pfeilklasse, die durch
zwei Pfeilklassen. Die Addition
ist wie folgt definiert: Es seien
und
.
ist die Pfeilklasse, die durch den Pfeil
eindeutig bestimmt ist.

ist eine abelsche Gruppe:

