Übung Aufgaben 10 (WS 18 19): Unterschied zwischen den Versionen
Zeile 1: | Zeile 1: | ||
==Aufgabe 10.1== | ==Aufgabe 10.1== | ||
− | Das Dreieck <math>\overline{ABC}</math> wurde durch die Nacheinanderausführung zweier verschiedener Geradenspiegelungen auf das Dreieck <math>\overline{A''B''C''}</math> abgebildet. Konstruieren Sie die beiden Spiegelgeraden.<br /><br /> | + | Das Dreieck <math>\overline{ABC}</math> wurde durch die Nacheinanderausführung zweier verschiedener Geradenspiegelungen auf das Dreieck <math>\overline{A''B''C''}</math> abgebildet. Konstruieren Sie die beiden Spiegelgeraden.<br /><br />Falls nichts angezeigt wird, können Sie mit folgendem Link [{{fullurl:{{PAGENAME}}|action=purge}} den Servercache leeren]<br /> |
− | + | ||
<ggb_applet width="649" height="515" version="4.2" ggbBase64="UEsDBBQACAgIABV6KEQAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIABV6KEQAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Vzdctu2Er5OnwLDi3MVSQT/ROVI6URqfpw4beY4p9M5NxmIhChEFMmSlH8yfZy+SV/sLACSIiVKlmRZodxqbIMgFljg28XuR9B2/8fbuY+uaZywMBgouK0qiAZO6LLAGyiLdNKylR9f/tD3aOjRcUzQJIznJB0oRltTlv2g1rZU3pm5A0WdTDSHqnbLwdhtGbo+aY1N3W1NyMRwbU3Hlu0oCN0m7EUQ/kzmNImIQ6+cKZ2Ty9AhqRhzmqbRi07n5uamnWtvh7HX8bxx+zZxFQQzD5KBkl28gOEqnW50Ia6pKu789vFSDt9iQZKSwKEK4qtasJc/POvfsMANb9ANc9PpQLHMroKmlHlTWKalwpo6XCiCtUbUSdk1TaBrqSrWnM4jRYiRgLc/k1fIL5ajIJddM5fGgE9bVw0DG6oqSwWFMaNBmkniTGMnH6t/zeiNHJRfCX3QKQ1Df0z4eOiPP5Cmaip6zgssCw0Ky5JNqryn6rLQZGHIwpQyhuxuSFFDyhhSxtDB2CxhY58OlAnxE8CPBZMYbFfUk/TOp2I+2Y3l2vFzWFPCvoGwzgGVgMN9VX3OvwHl50aOdGmRuKQ1jRdblcr2ks5co2X0dteoPWideq5Tq1ulZtbrtB+Gba4TmyWdoEp8ie91XK0tKiWQR9aobwN2VeNGU+6h0DJOvURD7XWPvsguBr/pahuVdtVT4Nrv5BGonwUdlEy5bLYpUzpPeBjSe8js8WiCkQkhx+pC8DAR7kHR1RAEGYRNZJhQxTayeNlFehcaDKQjG3E5rCMRc0wbfhhdMZiFTBiM3+1CqEMYFBnI1BEWocpAEKCQCHcQ+jQdJEwTmdCJq8caH0K3kGFBTbeRAXPkka6LQVCHjlAH9RrSMdJ5Z9xFmoUsPh42eAS1bD51GFJDlooszAeEYAmBUgZJkLeRzlcD2yoKE1agO6V+lIMkcGRBtEgr2DlzN79Mw6iwoZB2Q2c2LLDOWihJ0rIYpIllKpJpo5KpnvV9MqY+5PMr7ggIXROfRyqhYRIGKcqdQJP3vJhEU+YkVzRNoVeCvpJrcklSevsGpJNct1AtEmifLhyfuYwEv4KX8CH4gKjIpzz+5vnU0LtSixOGsXt1l4DroNv/0TiEoKkBgyh/IJzeySbdxtUmQDpxCHd6c6UTBJq7DU2WVE2vi6WRW1osCHkxK2zBry+SYei7RXMUsiAdkShdxIIcwexivqhXgedTga1IH0AznNk4vL2SoOpyrM93EdRUOYGxNwr9MEawJTXTBIGsHMtSyPCZFVKqkFGFhJpbiblFO+5pQkKUY1kKKTC7nFq2UpyvEqu5GpZIzqZU3Uw4DWcti4Cll3klZc4sWyqWHX5ezMfgbxlu1THxscbsd1ZcrD+jcUB96UgB2HIRLhLp2YV3PusvEvqJpNNXgfsf6sGe/ER4XExhaCm6nLJLHTaHjvJ+Bh7hhv0vTFXedakX03yJvuCjElrRqpbdeu22GOpNHM4vguvP4DUrU+138vX0EydmEXdONIZAPaNL/3NZQiDMu+V+sPgEVuHwiANAphxEBZFFOg1jQTlh2wLBQO//+jMIaAyBEtgm37E+nQPhRKlwS+HZhXleCR7L7YDC8VeII0XikO1L1KC51kWFMxM/mhLOdTMIfHIHEyiDIsb7GLqrUIElxHogNkTSJyJKpTvJ+cJFBMOJXVgyt8A+QbcDpaXxR5E7/lwC5Tf5XCNZPF8q35qVMCjvrlgNnE6idA9ew/PHC58QrtH5w6VmcGlHgssJ53MSuCgQrO1T6N95YaAs+QJR+a5EBHNnQ0TjIEqEFmneDnHRh8SDpZgjxQgU+kAZS4WZmhr7SIW5BYqhqhkkBVIwgwfSRKS5NEto4uIdc10qKE9nu3FLcJati01d2NfEWYpbmhfvY97NPphQj9eKiTj3eOH+E93TD9e9Sc+8qYW1YrADwAef8LnvXgQ80VGRGtZT44zSiHOSX4LPMQkSfqpTzYm7Q0maA2Ue9ls4w/K8kBw3B8kig7byIGc0GspqjvlpHcgqBT2DJKOfMCe/Pi1ev0wmCU0F8bBkItVOhSY+AZpvnoD3mStJ6RQU5yfJXV5L7vJmE8XRpNhEirmS4tCDKI52HIpTtW5jOM7kPj88YT7J95+ak5xeo9PJKpRug6AsUvN5ZOZVKGmToMSrLAfjRoNZTTRvn0CiyZ3ZPEFifveE8FLb9iMk5ktw+pWs/Fam23dr6djbnnL5/imA9Q7c9NWD7yPsePFrC+U8ZLeNw/c7/T2QXRJ5fs3mkc8clu7jlBdPwCnzMGo9ClusccoL6ZRv15xyuodTTpvilDl8+cNJq/uQJLSrU1ZB/sjiOIzrDx29NZhf/YtEYfLv+0h35bVC1uX7evsSdGv5fF354Efw4Fpwh5vAHe4P7rBh4GrtXvVjHfUsYwd0R5vQHe2P7qhh6BrLB4Dqxzjd64gMEvlSoqhoFXxrX1CUOzrljqSo8FcWu1mp/sVFyVxP9dne2c0lH3m+Zae027aNu7aBe10IopqpvW5lp3stfYOfntfpPGkc5Lg+yuJ6uFtYPSu8x43Du1UXcBt8ELMLwyuH4+kmnncw29tkwkd84798uWDL3WA+iLIc64XBLoRwuy2Gh9pi+N1sscOB8Ckp4XZ8R4fiO2oivqUXON+ZI9YwxRq+uBNrrOGONQyyhkc+nE3+fThl89LuMlYYhmr3NLVnm6pqaZakmN84+azGbrtReXgnXtk42NX6hJiTHU4nzxf0cUNB38Awa5knN8I5Us57DhW/4AOI5hfcmNOZxh8s7gfwsHEAN/9wcT+ER41DuDkHjF9whTiKqraC8xbCmHd3qt1JqbokifdbbRtB/HKk35duNjm830n/OXI8OjVsFOh/i0PHRiH+dI8d8/C8fhjzfp8E+r4xibMxh4ibkf2wD7IfGoPs9zsv3Azl5T5QXjYGygYcDb6XkH6QdOxyE4vTpZgvxb5KtjY7iKXpT/mv2fyj/+HQP4d19Uh/bQ7ST/p8btYcnM/9SK5T/icBvJ7/N62X/wdQSwcIz7rzQucIAAD9SwAAUEsBAhQAFAAICAgAFXooRNY3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgICAAVeihEz7rzQucIAAD9SwAADAAAAAAAAAAAAAAAAABdAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAAH4JAAAAAA==" showResetIcon = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "true" showToolBar = "true" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" /><br /> | <ggb_applet width="649" height="515" version="4.2" ggbBase64="UEsDBBQACAgIABV6KEQAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIABV6KEQAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Vzdctu2Er5OnwLDi3MVSQT/ROVI6URqfpw4beY4p9M5NxmIhChEFMmSlH8yfZy+SV/sLACSIiVKlmRZodxqbIMgFljg28XuR9B2/8fbuY+uaZywMBgouK0qiAZO6LLAGyiLdNKylR9f/tD3aOjRcUzQJIznJB0oRltTlv2g1rZU3pm5A0WdTDSHqnbLwdhtGbo+aY1N3W1NyMRwbU3Hlu0oCN0m7EUQ/kzmNImIQ6+cKZ2Ty9AhqRhzmqbRi07n5uamnWtvh7HX8bxx+zZxFQQzD5KBkl28gOEqnW50Ia6pKu789vFSDt9iQZKSwKEK4qtasJc/POvfsMANb9ANc9PpQLHMroKmlHlTWKalwpo6XCiCtUbUSdk1TaBrqSrWnM4jRYiRgLc/k1fIL5ajIJddM5fGgE9bVw0DG6oqSwWFMaNBmkniTGMnH6t/zeiNHJRfCX3QKQ1Df0z4eOiPP5Cmaip6zgssCw0Ky5JNqryn6rLQZGHIwpQyhuxuSFFDyhhSxtDB2CxhY58OlAnxE8CPBZMYbFfUk/TOp2I+2Y3l2vFzWFPCvoGwzgGVgMN9VX3OvwHl50aOdGmRuKQ1jRdblcr2ks5co2X0dteoPWideq5Tq1ulZtbrtB+Gba4TmyWdoEp8ie91XK0tKiWQR9aobwN2VeNGU+6h0DJOvURD7XWPvsguBr/pahuVdtVT4Nrv5BGonwUdlEy5bLYpUzpPeBjSe8js8WiCkQkhx+pC8DAR7kHR1RAEGYRNZJhQxTayeNlFehcaDKQjG3E5rCMRc0wbfhhdMZiFTBiM3+1CqEMYFBnI1BEWocpAEKCQCHcQ+jQdJEwTmdCJq8caH0K3kGFBTbeRAXPkka6LQVCHjlAH9RrSMdJ5Z9xFmoUsPh42eAS1bD51GFJDlooszAeEYAmBUgZJkLeRzlcD2yoKE1agO6V+lIMkcGRBtEgr2DlzN79Mw6iwoZB2Q2c2LLDOWihJ0rIYpIllKpJpo5KpnvV9MqY+5PMr7ggIXROfRyqhYRIGKcqdQJP3vJhEU+YkVzRNoVeCvpJrcklSevsGpJNct1AtEmifLhyfuYwEv4KX8CH4gKjIpzz+5vnU0LtSixOGsXt1l4DroNv/0TiEoKkBgyh/IJzeySbdxtUmQDpxCHd6c6UTBJq7DU2WVE2vi6WRW1osCHkxK2zBry+SYei7RXMUsiAdkShdxIIcwexivqhXgedTga1IH0AznNk4vL2SoOpyrM93EdRUOYGxNwr9MEawJTXTBIGsHMtSyPCZFVKqkFGFhJpbiblFO+5pQkKUY1kKKTC7nFq2UpyvEqu5GpZIzqZU3Uw4DWcti4Cll3klZc4sWyqWHX5ezMfgbxlu1THxscbsd1ZcrD+jcUB96UgB2HIRLhLp2YV3PusvEvqJpNNXgfsf6sGe/ER4XExhaCm6nLJLHTaHjvJ+Bh7hhv0vTFXedakX03yJvuCjElrRqpbdeu22GOpNHM4vguvP4DUrU+138vX0EydmEXdONIZAPaNL/3NZQiDMu+V+sPgEVuHwiANAphxEBZFFOg1jQTlh2wLBQO//+jMIaAyBEtgm37E+nQPhRKlwS+HZhXleCR7L7YDC8VeII0XikO1L1KC51kWFMxM/mhLOdTMIfHIHEyiDIsb7GLqrUIElxHogNkTSJyJKpTvJ+cJFBMOJXVgyt8A+QbcDpaXxR5E7/lwC5Tf5XCNZPF8q35qVMCjvrlgNnE6idA9ew/PHC58QrtH5w6VmcGlHgssJ53MSuCgQrO1T6N95YaAs+QJR+a5EBHNnQ0TjIEqEFmneDnHRh8SDpZgjxQgU+kAZS4WZmhr7SIW5BYqhqhkkBVIwgwfSRKS5NEto4uIdc10qKE9nu3FLcJati01d2NfEWYpbmhfvY97NPphQj9eKiTj3eOH+E93TD9e9Sc+8qYW1YrADwAef8LnvXgQ80VGRGtZT44zSiHOSX4LPMQkSfqpTzYm7Q0maA2Ue9ls4w/K8kBw3B8kig7byIGc0GspqjvlpHcgqBT2DJKOfMCe/Pi1ev0wmCU0F8bBkItVOhSY+AZpvnoD3mStJ6RQU5yfJXV5L7vJmE8XRpNhEirmS4tCDKI52HIpTtW5jOM7kPj88YT7J95+ak5xeo9PJKpRug6AsUvN5ZOZVKGmToMSrLAfjRoNZTTRvn0CiyZ3ZPEFifveE8FLb9iMk5ktw+pWs/Fam23dr6djbnnL5/imA9Q7c9NWD7yPsePFrC+U8ZLeNw/c7/T2QXRJ5fs3mkc8clu7jlBdPwCnzMGo9ClusccoL6ZRv15xyuodTTpvilDl8+cNJq/uQJLSrU1ZB/sjiOIzrDx29NZhf/YtEYfLv+0h35bVC1uX7evsSdGv5fF354Efw4Fpwh5vAHe4P7rBh4GrtXvVjHfUsYwd0R5vQHe2P7qhh6BrLB4Dqxzjd64gMEvlSoqhoFXxrX1CUOzrljqSo8FcWu1mp/sVFyVxP9dne2c0lH3m+Zae027aNu7aBe10IopqpvW5lp3stfYOfntfpPGkc5Lg+yuJ6uFtYPSu8x43Du1UXcBt8ELMLwyuH4+kmnncw29tkwkd84798uWDL3WA+iLIc64XBLoRwuy2Gh9pi+N1sscOB8Ckp4XZ8R4fiO2oivqUXON+ZI9YwxRq+uBNrrOGONQyyhkc+nE3+fThl89LuMlYYhmr3NLVnm6pqaZakmN84+azGbrtReXgnXtk42NX6hJiTHU4nzxf0cUNB38Awa5knN8I5Us57DhW/4AOI5hfcmNOZxh8s7gfwsHEAN/9wcT+ER41DuDkHjF9whTiKqraC8xbCmHd3qt1JqbokifdbbRtB/HKk35duNjm830n/OXI8OjVsFOh/i0PHRiH+dI8d8/C8fhjzfp8E+r4xibMxh4ibkf2wD7IfGoPs9zsv3Azl5T5QXjYGygYcDb6XkH6QdOxyE4vTpZgvxb5KtjY7iKXpT/mv2fyj/+HQP4d19Uh/bQ7ST/p8btYcnM/9SK5T/icBvJ7/N62X/wdQSwcIz7rzQucIAAD9SwAAUEsBAhQAFAAICAgAFXooRNY3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgICAAVeihEz7rzQucIAAD9SwAADAAAAAAAAAAAAAAAAABdAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAAH4JAAAAAA==" showResetIcon = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "true" showToolBar = "true" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" /><br /> | ||
Zeile 21: | Zeile 20: | ||
==Aufgabe 10.4== | ==Aufgabe 10.4== | ||
− | Beweisen Sie: Bei Spiegelungen, Stöße beim Billard über Bande, etc. gilt stets: Einfallswinkel <math>\alpha</math> gleich Ausfallswinkel <math>\beta</math> (siehe GeoGebra-Applet).<br /> | + | Beweisen Sie: Bei Spiegelungen, Stöße beim Billard über Bande, etc. gilt stets: Einfallswinkel <math>\alpha</math> gleich Ausfallswinkel <math>\beta</math> (siehe GeoGebra-Applet).<br /> <br />Falls nichts angezeigt wird, können Sie mit folgendem Link [{{fullurl:{{PAGENAME}}|action=purge}} den Servercache leeren] |
<ggb_applet width="536" height="428" version="4.0" ggbBase64="UEsDBBQACAAIAAli4UAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAAli4UAAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s5VnNcts2ED6nT4HhoadIAgiQlFIpmcRxp55x2k6ddjq9gSQsoaYIloB+nOlLNQ+SZ+oCIClKcpzacdJ06rEMgFjsYr/9dgHK02fbZYHWotZSlbOADHGARJmpXJbzWbAyl4Nx8OzpV9O5UHOR1hxdqnrJzSxgVlLmsyDjnI3zkA0IZnjABBUDLrAYECYYTyaURWkeILTV8kmpvudLoSueiYtsIZb8XGXcOMMLY6ono9Fmsxm2poaqno/m83S41aAAtlnqWdB0noC6vUUb6sRDjMno11fnXv1AltrwMhMBsi6s5NOvHk03sszVBm1kbhazIGIsQAsh5wvr0wR8GlmhCgCpRGbkWmhY2hs6n82yCpwYL+38I99DRedOgHK5lrmoZwEe0jiJWYKj8TikUTixFlUtRWkaYdIYHbXqpmspNl6v7TmTsMgoVaTcqkR//olCHGL02DbENyE0ceynsH+GqW9C3zDfRF6G+eXMizIvw7wMowFaSy3TQsyCS15ogFCWlzWErxtrc10It5/mwc598hh80vINCFMMmHrM4TnGj+0nhg/DDdg9J0nPqqlXdzTamoxo/M9Nhh/lKG1thje5GUbvcTO+xaj3+5/4SaKeTTDlft3nyCK9zc1Di378cQZj9llcnI7aVJk22YH0wso27DFiqW2+0AmKJpb2BEWQG3ECLI8QmUCThAiyAZEIsQiGZIxi2yaIJjDBEEVjZOUIRS45ojH8YYlTFqMIlNmnCeQkImCIoYgi4nKKIcgk5PIScjSkIBFFKIJF1jwJrQoaIxbDiI4Rgz3alEwICFJYCGMwHyJKELWLSYLCGMVWH2E21eOx3TqoDFGMUUysQshqyGifzSA/RtR6EzdwybJamT2IsmXedo2quliANNSjXdnz9WmvKj6aFjwVBRwUFzaSCK15YTPCGbpUpUFtEEP/bF7zaiEzfSGMgVUa/c7X/Jwbsf0WpHVr28lmqtQ/1sqcqGK1LDVCmSpwt2dVkF4/7HYNA9qbYP2JqDcR9/rJjXYVzKCVFmBf1boV53l+ZiV2pQGQ/KEsrl/Ugl9VSu67MR25M2cqVlkhc8nLX4Cs1orFBXVHkC1X7RFEw6TdiKrzi2sNDEbb30StoMYQNpz0f5IAXfspSqIh7v+ASp1xm3xssr9oDFPXzVyE91c1wRPrLkR8K3bezmvZkcX2z/QLVeTdtPP/hFdmVbvbAxTH2nr1vJwXwnHElVs4mrOrVG0vPDmo1/X6uoIR9htI5w53BLUhjCIQaNrUt07G7qyTwk4GOwncsk3m3TyZhE7CtalvnRTQ12+t8ZS0XhLcmpHaVTQcNHnTVitLfnvSr0ppztuBkdlV4yrxC75fLVPRUWhfJ3kondPRAcemV6IuRdFQGmK5UivtM7TH9lxkcglDP9FAwm24foYN+Ke5mNei3XjhbmYeMDeL+2w9euxUfVur5Vm5fg1cONjAdNTucqqzWlaWciiFY+BK7FiVS83hFMn762wOguuZPS0AHmOhgexcmYWq3eULigq0NvUKsYSbFjKOXo6hHczP3R3O4olU+jvUte7o8/O7gMH0jVRzpORFteD2ntc4XfBrUe/B4PS9UvkhOIC98wCSvLIKbHQrITwx/I6hU4FCl097ZQrw1mg7CwahvYhfQ7bZ9o2/wvs7rHXWJtleYfZPDyIF9PE4fQCxF18WYvfBK3pguDK1XPIyR6W72ZxDOQl2By3HlmWIEwudx2Vl2gnuVTUKjpC3lakDln8A+J6r70Me3x/3HXq4QS9p0BuEHX67SmrgkL+CNxntyr1pCrvrfCfzXLgLnj9o/ij9Eu3Lm1xWhcykuQsnT/77nOxyGH8SUr6Sda3qA1qeeFryI1qefM0rpb+5nZwHIWiW/KuBuAHO+DOUxJf/ffrRIRs7vMiQsM9TFFvGOA6+POJgeofSmH4hpZEN3c3anjAWTlcc6RBe9T95ddxH+6w0cDUEHA4g5x7s9Ajs07uk+um96G6/DZj7JvXNA+ANZxDtv9h4CmNI/tjBT9kQhw9I4wsxt89vrqOnR7Bmt8OqG20tcNkXQuMB7S5IdBwmJMZs4jue0/GnOu8deIUtUx2Doawdv7NcCVHZl8Ufytc1L7X9PtrL9N6F3hNB9yJ68/XsFJrQRvMwjO/+uj2O7hWnixJIu+9vebFqAR4mUODxOIoYJROW4AaK+50YBB+Hmtwt1PeJG6+zXva0R09RqM1P4rIQWwfsx0Th5V4Uju/K797eKQpvPxCFGKrF/y4Ko/5bs/tyqvlHy9O/AVBLBwhsZZadrAYAAAUaAABQSwECFAAUAAgACAAJYuFA1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAAli4UBsZZadrAYAAAUaAAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAQwcAAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "true" showToolBar = "true" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /><br /> | <ggb_applet width="536" height="428" version="4.0" ggbBase64="UEsDBBQACAAIAAli4UAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAAli4UAAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s5VnNcts2ED6nT4HhoadIAgiQlFIpmcRxp55x2k6ddjq9gSQsoaYIloB+nOlLNQ+SZ+oCIClKcpzacdJ06rEMgFjsYr/9dgHK02fbZYHWotZSlbOADHGARJmpXJbzWbAyl4Nx8OzpV9O5UHOR1hxdqnrJzSxgVlLmsyDjnI3zkA0IZnjABBUDLrAYECYYTyaURWkeILTV8kmpvudLoSueiYtsIZb8XGXcOMMLY6ono9Fmsxm2poaqno/m83S41aAAtlnqWdB0noC6vUUb6sRDjMno11fnXv1AltrwMhMBsi6s5NOvHk03sszVBm1kbhazIGIsQAsh5wvr0wR8GlmhCgCpRGbkWmhY2hs6n82yCpwYL+38I99DRedOgHK5lrmoZwEe0jiJWYKj8TikUTixFlUtRWkaYdIYHbXqpmspNl6v7TmTsMgoVaTcqkR//olCHGL02DbENyE0ceynsH+GqW9C3zDfRF6G+eXMizIvw7wMowFaSy3TQsyCS15ogFCWlzWErxtrc10It5/mwc598hh80vINCFMMmHrM4TnGj+0nhg/DDdg9J0nPqqlXdzTamoxo/M9Nhh/lKG1thje5GUbvcTO+xaj3+5/4SaKeTTDlft3nyCK9zc1Di378cQZj9llcnI7aVJk22YH0wso27DFiqW2+0AmKJpb2BEWQG3ECLI8QmUCThAiyAZEIsQiGZIxi2yaIJjDBEEVjZOUIRS45ojH8YYlTFqMIlNmnCeQkImCIoYgi4nKKIcgk5PIScjSkIBFFKIJF1jwJrQoaIxbDiI4Rgz3alEwICFJYCGMwHyJKELWLSYLCGMVWH2E21eOx3TqoDFGMUUysQshqyGifzSA/RtR6EzdwybJamT2IsmXedo2quliANNSjXdnz9WmvKj6aFjwVBRwUFzaSCK15YTPCGbpUpUFtEEP/bF7zaiEzfSGMgVUa/c7X/Jwbsf0WpHVr28lmqtQ/1sqcqGK1LDVCmSpwt2dVkF4/7HYNA9qbYP2JqDcR9/rJjXYVzKCVFmBf1boV53l+ZiV2pQGQ/KEsrl/Ugl9VSu67MR25M2cqVlkhc8nLX4Cs1orFBXVHkC1X7RFEw6TdiKrzi2sNDEbb30StoMYQNpz0f5IAXfspSqIh7v+ASp1xm3xssr9oDFPXzVyE91c1wRPrLkR8K3bezmvZkcX2z/QLVeTdtPP/hFdmVbvbAxTH2nr1vJwXwnHElVs4mrOrVG0vPDmo1/X6uoIR9htI5w53BLUhjCIQaNrUt07G7qyTwk4GOwncsk3m3TyZhE7CtalvnRTQ12+t8ZS0XhLcmpHaVTQcNHnTVitLfnvSr0ppztuBkdlV4yrxC75fLVPRUWhfJ3kondPRAcemV6IuRdFQGmK5UivtM7TH9lxkcglDP9FAwm24foYN+Ke5mNei3XjhbmYeMDeL+2w9euxUfVur5Vm5fg1cONjAdNTucqqzWlaWciiFY+BK7FiVS83hFMn762wOguuZPS0AHmOhgexcmYWq3eULigq0NvUKsYSbFjKOXo6hHczP3R3O4olU+jvUte7o8/O7gMH0jVRzpORFteD2ntc4XfBrUe/B4PS9UvkhOIC98wCSvLIKbHQrITwx/I6hU4FCl097ZQrw1mg7CwahvYhfQ7bZ9o2/wvs7rHXWJtleYfZPDyIF9PE4fQCxF18WYvfBK3pguDK1XPIyR6W72ZxDOQl2By3HlmWIEwudx2Vl2gnuVTUKjpC3lakDln8A+J6r70Me3x/3HXq4QS9p0BuEHX67SmrgkL+CNxntyr1pCrvrfCfzXLgLnj9o/ij9Eu3Lm1xWhcykuQsnT/77nOxyGH8SUr6Sda3qA1qeeFryI1qefM0rpb+5nZwHIWiW/KuBuAHO+DOUxJf/ffrRIRs7vMiQsM9TFFvGOA6+POJgeofSmH4hpZEN3c3anjAWTlcc6RBe9T95ddxH+6w0cDUEHA4g5x7s9Ajs07uk+um96G6/DZj7JvXNA+ANZxDtv9h4CmNI/tjBT9kQhw9I4wsxt89vrqOnR7Bmt8OqG20tcNkXQuMB7S5IdBwmJMZs4jue0/GnOu8deIUtUx2Doawdv7NcCVHZl8Ufytc1L7X9PtrL9N6F3hNB9yJ68/XsFJrQRvMwjO/+uj2O7hWnixJIu+9vebFqAR4mUODxOIoYJROW4AaK+50YBB+Hmtwt1PeJG6+zXva0R09RqM1P4rIQWwfsx0Th5V4Uju/K797eKQpvPxCFGKrF/y4Ko/5bs/tyqvlHy9O/AVBLBwhsZZadrAYAAAUaAABQSwECFAAUAAgACAAJYuFA1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAAli4UBsZZadrAYAAAUaAAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAQwcAAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "true" showToolBar = "true" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /><br /> | ||
[[Lösung von Aufgabe 10.4P (WS_18/19)]] | [[Lösung von Aufgabe 10.4P (WS_18/19)]] |
Aktuelle Version vom 13. Dezember 2018, 13:31 Uhr
Inhaltsverzeichnis |
Aufgabe 10.1
Das Dreieck wurde durch die Nacheinanderausführung zweier verschiedener Geradenspiegelungen auf das Dreieck abgebildet. Konstruieren Sie die beiden Spiegelgeraden.
Falls nichts angezeigt wird, können Sie mit folgendem Link den Servercache leeren
Lösung von Aufgabe 10.1P (WS_18/19)
Aufgabe 10.2
Beweisen Sie Satz IX.2:
Gegeben seien zwei Spiegelgeraden a und b mit einem gemeinsamen Schnittpunkt S, sowie zwei Punkten und , die von S jeweils verschieden sind. Wir betrachten die Verkettung . Für einen beliebigen Punkt P und seinen Bildpunkt gilt: .
Lösung von Aufgabe 10.2P (WS_18/19)
Aufgabe 10.3
Das Rechteck soll durch eine Drehung auf das blaue Rechteck abgebildet werden. Konstruieren Sie den Drehpunkt. Wo müssen die beiden Achsen liegen, wenn die Drehung durch eine Verkettung zweier Achsenspiegelungen erzeugt werden soll?
Falls nichts angezeigt wird, können Sie mit folgendem Link den Servercache leeren.
Lösung von Aufgabe 10.3P (WS_18/19)
Aufgabe 10.4
Beweisen Sie: Bei Spiegelungen, Stöße beim Billard über Bande, etc. gilt stets: Einfallswinkel gleich Ausfallswinkel (siehe GeoGebra-Applet).
Falls nichts angezeigt wird, können Sie mit folgendem Link den Servercache leeren
Lösung von Aufgabe 10.4P (WS_18/19)
Aufgabe 10.5
Beweisen Sie Satz IX.3:
Bei einer Punktspiegelung ist der Schnittpunkt S der beiden Spiegelgeraden a und b Mittelpunkt der Strecke , mit .
Lösung von Aufgabe 10.5P (WS_18/19)