Übungsaufgaben zur Algebra, Serie 2 SoSe 2019: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: „<div style="margin:0; margin-right:4px; border:1px solid #27408B; padding: 1em 1em 1em 1em; background-color:#CCFFCC; align:left;"> {|width=90%| style="backgro…“)
 
(Aufgabe 01)
Zeile 5: Zeile 5:
 
Es sei <math>\mathbb{L}</math> die Menge aller reellen Funktionen die durch eine Funktionsgleichung vom Typ <math>y=mx+n</math> beschreibbar sind <math>(m,n\in \mathbb{R}, m \neq 0)</math>. Unter <math>\circ</math> wollen wir die NAF von Funktionen verstehen. Beweisen Sie: <math>[\mathbb{L}, \circ]</math> ist eine Gruppe. <br />
 
Es sei <math>\mathbb{L}</math> die Menge aller reellen Funktionen die durch eine Funktionsgleichung vom Typ <math>y=mx+n</math> beschreibbar sind <math>(m,n\in \mathbb{R}, m \neq 0)</math>. Unter <math>\circ</math> wollen wir die NAF von Funktionen verstehen. Beweisen Sie: <math>[\mathbb{L}, \circ]</math> ist eine Gruppe. <br />
 
Hinweis: Die NAF von Funktionen ist generell assoziativ. Diesbezüglich müssen Sie nichts beweisen.
 
Hinweis: Die NAF von Funktionen ist generell assoziativ. Diesbezüglich müssen Sie nichts beweisen.
 +
=Aufgabe 02=
 +
Es sei <math>\mathbb{P}</math> die Menge aller reellen Funktionen die durch eine Funktionsgleichung vom Typ <math>y=mx</math> beschreibbar sind <math>(m\in \mathbb{R}, m \neq 0)</math>. Unter <math>\circ</math> wollen wir die NAF von Funktionen verstehen. Beweisen Sie: <math>[\mathbb{P}, \circ]</math> ist eine Untergruppe von <math>[\mathbb{L}, \circ]</math>.
 
<!--- Was hier drunter steht muss stehen bleiben --->
 
<!--- Was hier drunter steht muss stehen bleiben --->
 
|}
 
|}
 
</div>
 
</div>
 
[[Kategorie:Algebra]]
 
[[Kategorie:Algebra]]

Version vom 18. Juni 2019, 13:09 Uhr

Aufgabe 01

Es sei \mathbb{L} die Menge aller reellen Funktionen die durch eine Funktionsgleichung vom Typ y=mx+n beschreibbar sind (m,n\in \mathbb{R}, m \neq 0). Unter \circ wollen wir die NAF von Funktionen verstehen. Beweisen Sie: [\mathbb{L}, \circ] ist eine Gruppe.
Hinweis: Die NAF von Funktionen ist generell assoziativ. Diesbezüglich müssen Sie nichts beweisen.

Aufgabe 02

Es sei \mathbb{P} die Menge aller reellen Funktionen die durch eine Funktionsgleichung vom Typ y=mx beschreibbar sind (m\in \mathbb{R}, m \neq 0). Unter \circ wollen wir die NAF von Funktionen verstehen. Beweisen Sie: [\mathbb{P}, \circ] ist eine Untergruppe von [\mathbb{L}, \circ].