Fixpunkt, Fixgerade, Fixpunktgerade (2010): Unterschied zwischen den Versionen
Aus Geometrie-Wiki
Tja??? (Diskussion | Beiträge) (→Richtig verstanden?) |
(→Definition) |
||
Zeile 40: | Zeile 40: | ||
* Eine Gerade g, die bei der Abbildung <math>\phi</math> auf sich selbst abgebildet wird, heißt Fixgerade g der Abbildung <math>\phi</math>. --[[Benutzer:Tja???|Tja???]] 16:08, 2. Nov. 2010 (UTC) | * Eine Gerade g, die bei der Abbildung <math>\phi</math> auf sich selbst abgebildet wird, heißt Fixgerade g der Abbildung <math>\phi</math>. --[[Benutzer:Tja???|Tja???]] 16:08, 2. Nov. 2010 (UTC) | ||
+ | * Es seien g eine Gerade und <math>\phi</math> eine Abbildung. g ist genau dann eine Fixgerade bezüglich <math>\phi</math>, wenn jeder Punkt von g bei der Abbildung <math>\phi</math> wieder auf einen Punkt von g abgebildet wird. --[[Benutzer:Schomuf|Schomuf]] 08:32, 3. Nov. 2010 (UTC) | ||
* ... | * ... | ||
− | |||
=== Richtig verstanden? === | === Richtig verstanden? === |
Version vom 3. November 2010, 09:32 Uhr
Inhaltsverzeichnis |
Fixpunkte
Beispiele/Gegenbeispiele
Definition des Begriffs Fixpunkt einer Abbildung
Definition 3.1: (Fixpunkt einer Abbildung )
- Ein Punkt heißt Fixpunkt einer Abbildung , wenn ... .
- Eine Abbildung heißt fixpunktfrei, wenn ... .
Richtig verstanden?
Fixgeraden
Beispiele/Gegenbeispiele
Definition
- Eine Gerade g, die bei der Abbildung auf sich selbst abgebildet wird, heißt Fixgerade g der Abbildung . --Tja??? 16:08, 2. Nov. 2010 (UTC)
- Es seien g eine Gerade und eine Abbildung. g ist genau dann eine Fixgerade bezüglich , wenn jeder Punkt von g bei der Abbildung wieder auf einen Punkt von g abgebildet wird. --Schomuf 08:32, 3. Nov. 2010 (UTC)
- ...
Richtig verstanden?
Fixpunktgeraden
Beispiele/Gegenbeispiele
Definition
- Eine Fixgerade f einer Abbildung , bei der (mindestens) zwei Punkt der Fixgeraden f bei der Abbildung auf sich selbst abgebildet werden, heißt Fixpunktgerade. --Tja??? 16:06, 2. Nov. 2010 (UTC)
- ...