Übungsaufgaben 3 EG WS2010: Unterschied zwischen den Versionen
Aus Geometrie-Wiki
Tja??? (Diskussion | Beiträge) (→Aufgabe 1) |
*m.g.* (Diskussion | Beiträge) (→Aufgabe 1) |
||
Zeile 1: | Zeile 1: | ||
Alle Aufgaben beziehen sich auf die ebene Geometrie. | Alle Aufgaben beziehen sich auf die ebene Geometrie. | ||
==Aufgabe 1== | ==Aufgabe 1== | ||
− | Beweisen Sie: Wenn die beiden Geraden <math>\ g</math> und <math>\ h</math> den Punkt <math>\ Z</math> und nur den Punkt <math>\ Z</math> gemeinsam haben, dann gilt <math>S_h \circ S_g = D_{Z,\angle (g,h)}</math>.<br /><br /> | + | Beweisen Sie: Wenn die beiden Geraden <math>\ g</math> und <math>\ h</math> den Punkt <math>\ Z</math> und nur den Punkt <math>\ Z</math> gemeinsam haben, dann gilt <math>S_h \circ S_g = D_{Z,2|\angle (g,h)}|</math>.<br /><br /> |
Gitl nicht: <math>S_h \circ S_g = D_{Z,\angle (g,h)*2}</math>?--[[Benutzer:Tja???|Tja???]] 10:00, 25. Nov. 2010 (UTC) | Gitl nicht: <math>S_h \circ S_g = D_{Z,\angle (g,h)*2}</math>?--[[Benutzer:Tja???|Tja???]] 10:00, 25. Nov. 2010 (UTC) | ||
Version vom 25. November 2010, 11:18 Uhr
Alle Aufgaben beziehen sich auf die ebene Geometrie.
Aufgabe 1
Beweisen Sie: Wenn die beiden Geraden und den Punkt und nur den Punkt gemeinsam haben, dann gilt .
Gitl nicht: ?--Tja??? 10:00, 25. Nov. 2010 (UTC)
Aufgabe 2
Es seien und zwei zueinander parallele Geraden. Ferner sei eine Gerade, die senkrecht auf und damit auch senkrecht auf steht. Der Punkt sei der Schnittpunkt von mit und der gemeinsame Schnittpunkt von und sei mit bezeichnet.
Man beweise: .
Aufgabe 3
Es seien und zwei nicht identische Punkte. Ferner seien die Winkel und supplementär.
Man beweise: .