Übungsaufgaben 3 EG WS2010: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Aufgabe 1)
(Aufgabe 1)
Zeile 3: Zeile 3:
 
Beweisen Sie: Wenn die beiden Geraden <math>\ g</math> und <math>\ h</math> den Punkt <math>\ Z</math> und nur den Punkt <math>\ Z</math> gemeinsam haben, dann gilt <math>S_h \circ S_g = D_{Z,2|\angle (g,h)}|</math>.<br /><br />
 
Beweisen Sie: Wenn die beiden Geraden <math>\ g</math> und <math>\ h</math> den Punkt <math>\ Z</math> und nur den Punkt <math>\ Z</math> gemeinsam haben, dann gilt <math>S_h \circ S_g = D_{Z,2|\angle (g,h)}|</math>.<br /><br />
 
Gitl nicht: <math>S_h \circ S_g = D_{Z,\angle (g,h)*2}</math>?--[[Benutzer:Tja???|Tja???]] 10:00, 25. Nov. 2010 (UTC)
 
Gitl nicht: <math>S_h \circ S_g = D_{Z,\angle (g,h)*2}</math>?--[[Benutzer:Tja???|Tja???]] 10:00, 25. Nov. 2010 (UTC)
 +
hab's gerade geändert--[[Benutzer:*m.g.*|*m.g.*]] 10:19, 25. Nov. 2010 (UTC) danke
  
 
==Aufgabe 2==
 
==Aufgabe 2==

Version vom 25. November 2010, 11:19 Uhr

Alle Aufgaben beziehen sich auf die ebene Geometrie.

Aufgabe 1

Beweisen Sie: Wenn die beiden Geraden \ g und \ h den Punkt \ Z und nur den Punkt \ Z gemeinsam haben, dann gilt S_h \circ S_g = D_{Z,2|\angle (g,h)}|.

Gitl nicht: S_h \circ S_g = D_{Z,\angle (g,h)*2}?--Tja??? 10:00, 25. Nov. 2010 (UTC) hab's gerade geändert--*m.g.* 10:19, 25. Nov. 2010 (UTC) danke

Aufgabe 2

Es seien \ g und \ h zwei zueinander parallele Geraden. Ferner sei \ a eine Gerade, die senkrecht auf \ g und damit auch senkrecht auf \ h steht. Der Punkt \ G sei der Schnittpunkt von \ a mit \ g und der gemeinsame Schnittpunkt von \ a und \ h sei mit \ H bezeichnet.

Man beweise: S_h \circ S_g = V_{2	\overrightarrow{GH}}.

Aufgabe 3

Es seien \ Z_1 und \ Z_2 zwei nicht identische Punkte. Ferner seien die Winkel \ \alpha und \ \beta supplementär.

Man beweise: D_{Z_2,\beta} \circ D_{Z_1, \alpha} = V_{2 	\overrightarrow{Z_1Z_2}}.