Mittelsenkrechte und Winkelhalbierende (WS10/11): Unterschied zwischen den Versionen
(Die Seite wurde neu angelegt: == Mittelsenkrechte und Winkelhalbierende == === Mittelsenkrechte === Eine Mittelsenkrechte ist das, was ihre Bezeichnung ausdrückt: eine Gerade, die eine Strecke halb...) |
TimoRR (Diskussion | Beiträge) (→Beweis der Existenzbehauptung:) |
||
(13 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt) | |||
Zeile 34: | Zeile 34: | ||
| (i) | | (i) | ||
| <math>\exist M \in\overline{AB}: |AM| = |MB|</math> | | <math>\exist M \in\overline{AB}: |AM| = |MB|</math> | ||
− | | | + | | Existenz und Eindeutigkeit des Mittelpunktes |
|- | |- | ||
| (ii) | | (ii) | ||
| <math>\exist P \in AB,Q^+ : |\angle PMB | = 90</math> | | <math>\exist P \in AB,Q^+ : |\angle PMB | = 90</math> | ||
− | | | + | | Winkelkonstruktionsaxiom |
|- | |- | ||
| (iii) | | (iii) | ||
| <math>\ PM</math> ist Mittelsenkrechte von <math>\overline{AB}</math> | | <math>\ PM</math> ist Mittelsenkrechte von <math>\overline{AB}</math> | ||
− | | | + | | (i), (ii) |
|} | |} | ||
− | + | --[[Benutzer:TimoRR|TimoRR]] 11:27, 6. Jan. 2011 (UTC) | |
+ | <br /> | ||
Bemerkung: Ihnen fällt sicherlich auf, dass wir nach dem Beweis von Satz V.5 die Existenz der Mittelsenkrechten von <math>\overline{AB}</math> gar nicht so ausführlich hätten führen müssen. Der Beweis von Satz V.5 steht momentan jedoch noch als Übungsaufgabe aus. | Bemerkung: Ihnen fällt sicherlich auf, dass wir nach dem Beweis von Satz V.5 die Existenz der Mittelsenkrechten von <math>\overline{AB}</math> gar nicht so ausführlich hätten führen müssen. Der Beweis von Satz V.5 steht momentan jedoch noch als Übungsaufgabe aus. | ||
Zeile 56: | Zeile 57: | ||
<ggb_applet width="517" height="512" version="3.2" ggbBase64="UEsDBBQACAAIAHS62DwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1szVfNbts4ED5vn4LQ3bIoxX+AlSJtLwG6G6Du9rA3Shrb3FCkSlKJnbfaF+kzdUhKthy3abct2uaicGY4P9/80cvnu1qQO9CGK5lHNE4iArJUFZebPGrtejSPnl8+W25AbaDQjKyVrpnNoyxOI0dv+eWzP5Zmq+4JE17kHYf7PFozYSAiptHAKrMFsCd01u644Ezvb4p/obTmyAhKrmXTohWrW6SVdfWam/449gYbwe0rfscr0ESoMo+mE3Qd/3sH2vKSiTy6SAIlzaP0ERNJmeNuleYPSlonflS+Rgohhj8A3kwcbTn2gS6hLQWvOJMuGO8HChFyzyu7zaMJnaFK4Jst+npBF0FbqZSuVntjoSa7f0ArhHk2cUDvwylN5+5k0C80OEk8a3jyauBuBdZiWgxhOzgCttG8OjlcmxdKHEmN4tK+ZI1ttc9p1pFWdu8MoC3tHL6SGwEdLUXIt1DeFmq38iDQLKh+u2/8Fe9QsXmphNJEO3gnKNB9i/D1Ms7Tg1TiZRIv0elwSg98uki9hP8W4eulBJfBtS5y2kdNk94MN8QRHIxYiofgBSsAUxuRVnL7uj9gCdx2odJw4a+2LrAHhkVw0El/lM7l+FH5LG9BSxChSCTmtlWtIXeuGIMt70gFJa/xGBgdJMyl6290IFAr2GjoHQ8dFADz3GRYiI/Iy3HvhPPBoK+lxVGA8VgXi+tUi12SR3W8iSNSMeuorhUE1IB9Yn1N+JI6YHMVHYaC8v3dd3LHP6KM7E/Wh68kJpotQ0rfAoLtsduHIXl9N+u1AUt2eTRyDbjH3psO2H+q6hQHJhFPHyT2ZOP0u4w1AFU3AG1X5qRBi75pBunwKBpnjcZTHDGDP+qNj9IY7ZOHoMzfCQ3nRoX3I+uqISD4BSxXvwrLLPPh0OxnYImghdSNaDy5+HHovfhllTjvwqE/A74knnhzSTz9n6VXqrpmsiKS1WjIbwEPGXcLmLDENTNh1NUhYakDNKDV2p7/4b+gs9N0lhA/qg6Ao7S7j860PRTxnFI6m04n6XSxmM8w/eNvTxpN+gVzTFr2ZNKOSelTdVg3dotTXYIxfifa4fZjujyiuuiJQqj7N7AWsPNIBu5g/n8G9jds/wj0VQD9HG32NNgaNfUwseiro/meBkm+pT1CuY6yxVPdcTIeUn/DPTtdfeOYSGg6HL5nb4UnwoX3MsiYsLF5jc/JktsD2sL12rW0uL/B78PztXwL0Lj30I18q5k07l383em+Okt38fXpLn7jdNOLkL1P991ZupN4QRcnf2Gtx1lYDYuYTmfT3znh4+Fjyv9+6H5AXX4EUEsHCGfkVtveAwAAcg0AAFBLAQIUABQACAAIAHS62Dxn5Fbb3gMAAHINAAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAAGAQAAAAA" framePossible = "false" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "true" showToolBarHelp = "true" showAlgebraInput = "true" allowRescaling = "true" /> | <ggb_applet width="517" height="512" version="3.2" ggbBase64="UEsDBBQACAAIAHS62DwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1szVfNbts4ED5vn4LQ3bIoxX+AlSJtLwG6G6Du9rA3Shrb3FCkSlKJnbfaF+kzdUhKthy3abct2uaicGY4P9/80cvnu1qQO9CGK5lHNE4iArJUFZebPGrtejSPnl8+W25AbaDQjKyVrpnNoyxOI0dv+eWzP5Zmq+4JE17kHYf7PFozYSAiptHAKrMFsCd01u644Ezvb4p/obTmyAhKrmXTohWrW6SVdfWam/449gYbwe0rfscr0ESoMo+mE3Qd/3sH2vKSiTy6SAIlzaP0ERNJmeNuleYPSlonflS+Rgohhj8A3kwcbTn2gS6hLQWvOJMuGO8HChFyzyu7zaMJnaFK4Jst+npBF0FbqZSuVntjoSa7f0ArhHk2cUDvwylN5+5k0C80OEk8a3jyauBuBdZiWgxhOzgCttG8OjlcmxdKHEmN4tK+ZI1ttc9p1pFWdu8MoC3tHL6SGwEdLUXIt1DeFmq38iDQLKh+u2/8Fe9QsXmphNJEO3gnKNB9i/D1Ms7Tg1TiZRIv0elwSg98uki9hP8W4eulBJfBtS5y2kdNk94MN8QRHIxYiofgBSsAUxuRVnL7uj9gCdx2odJw4a+2LrAHhkVw0El/lM7l+FH5LG9BSxChSCTmtlWtIXeuGIMt70gFJa/xGBgdJMyl6290IFAr2GjoHQ8dFADz3GRYiI/Iy3HvhPPBoK+lxVGA8VgXi+tUi12SR3W8iSNSMeuorhUE1IB9Yn1N+JI6YHMVHYaC8v3dd3LHP6KM7E/Wh68kJpotQ0rfAoLtsduHIXl9N+u1AUt2eTRyDbjH3psO2H+q6hQHJhFPHyT2ZOP0u4w1AFU3AG1X5qRBi75pBunwKBpnjcZTHDGDP+qNj9IY7ZOHoMzfCQ3nRoX3I+uqISD4BSxXvwrLLPPh0OxnYImghdSNaDy5+HHovfhllTjvwqE/A74knnhzSTz9n6VXqrpmsiKS1WjIbwEPGXcLmLDENTNh1NUhYakDNKDV2p7/4b+gs9N0lhA/qg6Ao7S7j860PRTxnFI6m04n6XSxmM8w/eNvTxpN+gVzTFr2ZNKOSelTdVg3dotTXYIxfifa4fZjujyiuuiJQqj7N7AWsPNIBu5g/n8G9jds/wj0VQD9HG32NNgaNfUwseiro/meBkm+pT1CuY6yxVPdcTIeUn/DPTtdfeOYSGg6HL5nb4UnwoX3MsiYsLF5jc/JktsD2sL12rW0uL/B78PztXwL0Lj30I18q5k07l383em+Okt38fXpLn7jdNOLkL1P991ZupN4QRcnf2Gtx1lYDYuYTmfT3znh4+Fjyv9+6H5AXX4EUEsHCGfkVtveAwAAcg0AAFBLAQIUABQACAAIAHS62Dxn5Fbb3gMAAHINAAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAAGAQAAAAA" framePossible = "false" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "true" showToolBarHelp = "true" showAlgebraInput = "true" allowRescaling = "true" /> | ||
− | ===== Definition VI.2 ===== | + | ===== Definition VI.2 (Winkelhalbierende)===== |
− | :: Es seien <math>\ p</math>,<math>\ w</math> und <math>\ q</math> drei Halbgeraden ein und derselben Ebene mit dem gemeinsamen Anfangspunkt <math>\ S</math>. Die Halbgerade <math>\ w</math> ist die Winkelhalbierende des Winkels <math>\angle pq</math>, wenn <math>\ w</math> im Inneren von <math>\angle pq</math> liegt und die beiden Winkel <math>\angle pw</math> und <math>\angle wq</math> dieselbe Größe haben. | + | Es sei ASB ein Winkel und SP+ ein Strahl, der vollständig im Inneren vom Winkel ASB liegt. Der Strahl SP+ heißt Winkelhalbierende des Winkels ASB, falls die Winkel ASP und PSB dieselbe Größe haben.--[[Benutzer:Engel82|Engel82]] 10:02, 15. Dez. 2010 (UTC) |
+ | |||
+ | :: Es seien <math>\ p</math>,<math>\ w</math> und <math>\ q</math> drei Halbgeraden ein und derselben Ebene mit dem gemeinsamen Anfangspunkt <math>\ S</math>. Die Halbgerade <math>\ w</math> ist die Winkelhalbierende des Winkels <math>\angle pq</math>, wenn <math>\ w</math> im Inneren von <math>\angle pq</math> liegt und die beiden Winkel <math>\angle pw</math> und <math>\angle wq</math> dieselbe Größe haben. --[[Benutzer:Halikarnaz|Halikarnaz]] 21:10, 15. Dez. 2010 (UTC) | ||
===== Satz VI.<math> 1 \frac{1}{2}</math> ===== | ===== Satz VI.<math> 1 \frac{1}{2}</math> ===== | ||
Zeile 63: | Zeile 66: | ||
===== Beweis von Satz VI.<math> 1 \frac{1}{2}</math> ===== | ===== Beweis von Satz VI.<math> 1 \frac{1}{2}</math> ===== | ||
− | Übungsaufgabe | + | Übungsaufgabe |
===== Satz VI.2 (Existenz und Eindeutigkeit der Winkelhalbierenden)===== | ===== Satz VI.2 (Existenz und Eindeutigkeit der Winkelhalbierenden)===== | ||
− | + | siehe Auftrag der Woche 10. | |
===== Beweis von Satz VI.2 ===== | ===== Beweis von Satz VI.2 ===== | ||
− | + | Tutorium_10 | |
+ | [[Category:Einführung_Geometrie]] |
Aktuelle Version vom 6. Januar 2011, 13:27 Uhr
Inhaltsverzeichnis[Verbergen] |
Mittelsenkrechte und Winkelhalbierende
Mittelsenkrechte
Eine Mittelsenkrechte ist das, was ihre Bezeichnung ausdrückt: eine Gerade, die eine Strecke halbiert und senkrecht auf ihr steht.
Definition VI.1: (Mittelsenkrechte)
- Es sei
eine Gerade und
eine Strecke, die durch
im Punkt
geschnitten wird.
ist die Mittelsenkrechte von
, wenn
- Es sei
Satz VI.1: (Existenz und Eindeutigkeit der Mittelsenkrechten)
- Jede Strecke hat in jeder Ebene, zu der die Strecke vollständig gehört, genau eine Mittelsenkrechte.
Beweis von Satz VI.1
Es sei eine Strecke, die vollständig zur Ebene
gehören möge.
Behauptungen:
- Es gibt in
eine Gerade
, die die Mittelsenkrechte von
ist.
- Es gibt in
nicht mehr als eine Gerade
, die die Mittelsenkrechte von
ist.
Beweis der Existenzbehauptung:
Aus Gründen der effizienten Bezeichnung führen wir den Punkt ein, der zur Ebene
aber nicht zur Geraden
gehören möge.
Nr. | Beweisschritt | Begründung |
---|---|---|
(i) | ![]() |
Existenz und Eindeutigkeit des Mittelpunktes |
(ii) | ![]() |
Winkelkonstruktionsaxiom |
(iii) | ![]() ![]() |
(i), (ii) |
--TimoRR 11:27, 6. Jan. 2011 (UTC)
Bemerkung: Ihnen fällt sicherlich auf, dass wir nach dem Beweis von Satz V.5 die Existenz der Mittelsenkrechten von gar nicht so ausführlich hätten führen müssen. Der Beweis von Satz V.5 steht momentan jedoch noch als Übungsaufgabe aus.
Beweis der Eindeutigkeitsbehauptung
Die Eindeutigkeit des Mittelpunktes einer Strecke wurde bereits bewiesen (Satz III.1). Die Eindeutigkeit der Senkrechten in einem Punkt einer Geraden zu dieser Geraden wird/wurde mit Satz V.5 bewiesen.
Winkelhalbierende
Ein Winkel ist ein Paar von Halbgeraden, die einen gemeinsamen Anfangspunkt haben. Eine Winkelhalbierende teilt einen Winkel in zwei Teilwinkel, die jeweils dieselbe Größe haben. Die Teilwinkel werden dadurch gebildet, dass jeder Schenkel des ursprünglichen Winkels jeweils mit der Winkelhalbierenden zu einem neuen Winkel zusammengefasst wird. Es ist also sinnvoll, die Winkelhalbierende eines Winkels als eine besondere Halbgerade zu definieren.
Definition VI.2 (Winkelhalbierende)
Es sei ASB ein Winkel und SP+ ein Strahl, der vollständig im Inneren vom Winkel ASB liegt. Der Strahl SP+ heißt Winkelhalbierende des Winkels ASB, falls die Winkel ASP und PSB dieselbe Größe haben.--Engel82 10:02, 15. Dez. 2010 (UTC)
- Es seien
,
und
drei Halbgeraden ein und derselben Ebene mit dem gemeinsamen Anfangspunkt
. Die Halbgerade
ist die Winkelhalbierende des Winkels
, wenn
im Inneren von
liegt und die beiden Winkel
und
dieselbe Größe haben. --Halikarnaz 21:10, 15. Dez. 2010 (UTC)
- Es seien
Satz VI.
- Es sei
die Winkelhalbierende des Winkels
. Dann gilt
.
- Es sei
Beweis von Satz VI.
Übungsaufgabe
Satz VI.2 (Existenz und Eindeutigkeit der Winkelhalbierenden)
siehe Auftrag der Woche 10.
Beweis von Satz VI.2
Tutorium_10