Lösung von Aufgabe 5.5 (SoSe11): Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
Zeile 5: Zeile 5:
 
a) Beweisen Sie folgende Implikation durch einen Widerspruchsbeweis: <math>\ a \| b \land b \| c \Rightarrow \ a \| c</math>  . <br />
 
a) Beweisen Sie folgende Implikation durch einen Widerspruchsbeweis: <math>\ a \| b \land b \| c \Rightarrow \ a \| c</math>  . <br />
 
b) Welche Eigenschaft der Relation <math>\| </math> auf der Menge aller Geraden einer Ebene haben Sie hiermit gezeigt?<br />
 
b) Welche Eigenschaft der Relation <math>\| </math> auf der Menge aller Geraden einer Ebene haben Sie hiermit gezeigt?<br />
 +
 +
Ich mache mal einen Anfang:<br />
 +
Vor.: a, b und c sind drei paarweise versch. Geraden<br />
 +
Beh.: <math>\ a \| b \land b \| c \Rightarrow \ a \| c</math>  . <br />
 +
 +
Annahme: <math>\ a \| b \land b \| c \Rightarrow</math> a nicht parallel zu c
 +
<br />
 +
 +
{| class="wikitable"
 +
|-
 +
| Beweisschritt || Begründung
 +
|-
 +
| 1) a,b,c sind 3 paarweise versch. Geraden || Vor.
 +
|-
 +
| 2) es existiert ein Pkt A, der nicht auf der Geraden liegt  || Axiom I/0
 +
|-
 +
| 3) durch A geht eine Gerade, die parallel zu a ist || 2), Parallelenaxiom
 +
|-
 +
| 4) eine weitere Gerade geht durch A und ist nicht parallel zu a|| Def. Schnittpkt von Geraden
 +
|-
 +
||| Widerspruch zur Vor.
 +
|-}
 +
<br />
 +
<br />b) Wenn eine Gerade a parallel zu einer Gerade b ist und eine Gerade b zu einer Geraden c pparallel ist, dann ist auch eine Gerade a zu einer Geraden c parallel. Durch das "und" wird deutlich, dass beide Teilaussagen wahr sein müssen, damit die Gesamtaussage wahr wird. --[[Benutzer:Flo 21|Flo 21]] 15:30, 5. Mai 2011 (CEST)
 +
 +
 +
wie kann ich die Tabelle an die Stelle bekommen wo sie hin soll???. Das ist eine ganz schöne Fummelei, die Tabelle zu erstellen!--[[Benutzer:Flo 21|Flo 21]] 15:30, 5. Mai 2011 (CEST)
  
  
 
[[Category:Einführung_Geometrie]]
 
[[Category:Einführung_Geometrie]]

Version vom 5. Mai 2011, 14:30 Uhr

Das Parallelenaxiom lautet wie folgt:
Zu jeder Geraden g und zu jedem nicht auf g liegenden Punkt A gibt es höchstens eine Gerade, die durch A verläuft und zu g parallel ist.
Nutzen Sie dieses Axiom, beim Lösen der folgenden Aufgabe:
Es seien a, b und c drei paarweise verschiedene Geraden in ein und derselben Ebene.
a) Beweisen Sie folgende Implikation durch einen Widerspruchsbeweis: \ a \| b \land b \| c \Rightarrow \ a \| c .
b) Welche Eigenschaft der Relation \| auf der Menge aller Geraden einer Ebene haben Sie hiermit gezeigt?

Ich mache mal einen Anfang:
Vor.: a, b und c sind drei paarweise versch. Geraden
Beh.: \ a \| b \land b \| c \Rightarrow \ a \| c .

Annahme: \ a \| b \land b \| c \Rightarrow a nicht parallel zu c



b) Wenn eine Gerade a parallel zu einer Gerade b ist und eine Gerade b zu einer Geraden c pparallel ist, dann ist auch eine Gerade a zu einer Geraden c parallel. Durch das "und" wird deutlich, dass beide Teilaussagen wahr sein müssen, damit die Gesamtaussage wahr wird. --Flo 21 15:30, 5. Mai 2011 (CEST) wie kann ich die Tabelle an die Stelle bekommen wo sie hin soll???. Das ist eine ganz schöne Fummelei, die Tabelle zu erstellen!--Flo 21 15:30, 5. Mai 2011 (CEST)
Beweisschritt Begründung
1) a,b,c sind 3 paarweise versch. Geraden Vor.
2) es existiert ein Pkt A, der nicht auf der Geraden liegt Axiom I/0
3) durch A geht eine Gerade, die parallel zu a ist 2), Parallelenaxiom
4) eine weitere Gerade geht durch A und ist nicht parallel zu a Def. Schnittpkt von Geraden
Widerspruch zur Vor.