Lösung von Aufg. 8.1 (SoSe 11): Unterschied zwischen den Versionen
Aus Geometrie-Wiki
(Die Seite wurde neu angelegt: „Beweisen Sie: Eine Ebene und eine nicht in ihr liegende Gerade haben höchstens einen Punkt gemeinsam. Category:Einführung_Geometrie“) |
HecklF (Diskussion | Beiträge) |
||
| Zeile 1: | Zeile 1: | ||
Beweisen Sie: Eine Ebene und eine nicht in ihr liegende Gerade haben höchstens einen Punkt gemeinsam. | Beweisen Sie: Eine Ebene und eine nicht in ihr liegende Gerade haben höchstens einen Punkt gemeinsam. | ||
| + | Voraussetzung: Ebene E und eine Gerade g, die nicht (vollständig) in E liegt <br /> | ||
| + | Behauptung: <math>\ E \cap g \ = \ \lbrace \rbrace \wedge \lbrace S\rbrace</math> | ||
| + | <br /> | ||
| + | Beweis in zwei Schritten: | ||
| + | Fall 1: E und g haben keinen gemeinsamen Schnittpunkt: Dieser Fall ist trivial, genau dann wenn, g nicht mit E inzidiert und somit Parallel zur Ebenen e verläuft | ||
| + | <br /> | ||
| + | Fall 2: <math>\ E \cap g \ = \ \lbrace S\rbrace</math> | ||
| + | Beweis durch Widerspruch: | ||
| + | Annahme: <math>\ E \cap g \ = \ \lbrace S; P\rbrace</math> | ||
| + | |||
| + | |||
| + | {| class="wikitable" | ||
| + | |- | ||
| + | | 1) S <math>\in</math> E|| Annahme | ||
| + | |- | ||
| + | | 2) P <math>\in</math> E || Annahme | ||
| + | |- | ||
| + | | 3) g liegt vollständig in E || Axiom I.5, (1), (2) | ||
| + | |- | ||
| + | | 4) Widerspruch zur Voraussetzung, Annahme ist zu verwerfen || (3), Voraussetzung | ||
| + | |} | ||
| + | --[[Benutzer:HecklF|Flo60]] 23:07, 31. Mai 2011 (CEST) | ||
[[Category:Einführung_Geometrie]] | [[Category:Einführung_Geometrie]] | ||
Version vom 31. Mai 2011, 22:07 Uhr
Beweisen Sie: Eine Ebene und eine nicht in ihr liegende Gerade haben höchstens einen Punkt gemeinsam.
Voraussetzung: Ebene E und eine Gerade g, die nicht (vollständig) in E liegt
Behauptung:
Beweis in zwei Schritten:
Fall 1: E und g haben keinen gemeinsamen Schnittpunkt: Dieser Fall ist trivial, genau dann wenn, g nicht mit E inzidiert und somit Parallel zur Ebenen e verläuft
Fall 2:
Beweis durch Widerspruch:
Annahme:
1) S E |
Annahme |
2) P E |
Annahme |
| 3) g liegt vollständig in E | Axiom I.5, (1), (2) |
| 4) Widerspruch zur Voraussetzung, Annahme ist zu verwerfen | (3), Voraussetzung |
--Flo60 23:07, 31. Mai 2011 (CEST)
E
