Quiz der Woche: Unterschied zwischen den Versionen
Aus Geometrie-Wiki
*m.g.* (Diskussion | Beiträge) |
*m.g.* (Diskussion | Beiträge) |
||
Zeile 1: | Zeile 1: | ||
− | Es sei <math>R</math> ein Äquivalenzrelation auf der Menge <math>M</math>. Wir zerlegen <math>\ M</math> derart in Teilmengen <math>\ T_1, T_2, T_3, ..., T_n, ...</math>, dass gilt: Zwei Elemente von <math>\ M</math> liegen genau dann in derselben Teilmenge, wenn sie in Relation <math>R</math> zueinander stehen. | + | Es sei <math>R</math> ein Äquivalenzrelation auf der Menge <math>M</math>. Wir zerlegen <math>\ M</math> derart in Teilmengen <math>\ T_1, T_2, T_3, ..., T_n, ...</math>, dass gilt: Zwei Elemente von <math>\ M</math> liegen genau dann in derselben Teilmenge, wenn sie in der Relation <math>\ R</math> zueinander stehen. |
+ | <quiz> | ||
+ | {Im Folgenden hat jemand versucht, formal zu schreiben, wie eine beliebige Teilmenge entsprechend der obigen Einteilung definiert ist. Welche der folgenden Definitionen ist diesbezüglich korrekt?} | ||
+ | + Hallo | ||
+ | -Test | ||
+ | </quiz> | ||
Im folgenden soll bewiesen werden, dass die so gewonnenen Teilmengen von <math>M</math> eine Klasseneinteilung von <math>M</math> sind. Ergänzen Sie dementsprechend die folgenden Ausführungen: | Im folgenden soll bewiesen werden, dass die so gewonnenen Teilmengen von <math>M</math> eine Klasseneinteilung von <math>M</math> sind. Ergänzen Sie dementsprechend die folgenden Ausführungen: |
Version vom 13. Mai 2010, 23:17 Uhr
Es sei ein Äquivalenzrelation auf der Menge
. Wir zerlegen
derart in Teilmengen
, dass gilt: Zwei Elemente von
liegen genau dann in derselben Teilmenge, wenn sie in der Relation
zueinander stehen.
Im folgenden soll bewiesen werden, dass die so gewonnenen Teilmengen von eine Klasseneinteilung von
sind. Ergänzen Sie dementsprechend die folgenden Ausführungen: