Inzidenz im Raum WS 11/12): Unterschied zwischen den Versionen
Aus Geometrie-Wiki
(Die Seite wurde neu angelegt: „=== Erweiterung der Inzidenzaxiome für die Geometrie im Raum === ==== Inzidenzaxiome der Raumgeometrie ==== Wir erweitern die Menge der undefinierten Grundbegrif…“) |
RicRic (Diskussion | Beiträge) (→Definition I/10: (parallel für Ebenen)) |
||
Zeile 57: | Zeile 57: | ||
=====Definition I/10: (parallel für Ebenen)===== | =====Definition I/10: (parallel für Ebenen)===== | ||
− | ::Zwei Ebenen ''E''<sub>1</sub> und ''E''<sub>2</sub> sind parallel, wenn sie keinen Punkt gemeinsam haben. | + | ::Zwei Ebenen ''E''<sub>1</sub> und ''E''<sub>2</sub> sind parallel, wenn sie keinen Punkt gemeinsam haben.<br /><br /> |
+ | |||
+ | Kann ich dann davon ausgehen, dass wenn zwei Ebenen keinen Punkt gemeinsam haben sie dann parallel sind? Steht ja so nicht da.--[[Benutzer:RicRic|RicRic]] 23:09, 5. Dez. 2011 (CET) | ||
==== Folgerungen aus den Axiomen der räumlichen Inzidenzgeometrie ==== | ==== Folgerungen aus den Axiomen der räumlichen Inzidenzgeometrie ==== |
Version vom 5. Dezember 2011, 23:09 Uhr
Inhaltsverzeichnis |
Erweiterung der Inzidenzaxiome für die Geometrie im Raum
Inzidenzaxiome der Raumgeometrie
Wir erweitern die Menge der undefinierten Grundbegriffe um die Menge aller Ebenen.
Auch Ebenen sollen Punktmengen sein, weshalb wir Axiom I/0 ergänzen:
Axiom I/0
- Geraden und Ebenen sind Punktmengen.
Definition I/3: (Inzidenz Punkt Ebene)
- Ein Punkt P inzidiert mit einer Ebene E, wenn P ein Element der Ebene E ist.
Definition I/4: (Inzidenz Gerade Ebene)
- Eine Gerade g gehört zu einer Ebene E, wenn jeder Punkt von g zu E gehört.
Definition I/5: (Raum)
- Die Menge aller Punkte P wird Raum genannt.
Zusätzlich zu den Axiomen I/1 bis I/3 werden die folgenden Forderungen erhoben:
Axiom I/4
- Zu je drei nichtkollinearen Punkten gibt es genau eine Ebene, die diese drei Punkte enthält. Jede Ebene enthält (wenigstens) einen Punkt.
Axiom I/5
- Wenn zwei Punkte einer Geraden g in einer Ebene E liegen, so gehört g zu E.
Axiom I/6
- Wenn zwei Ebenen einen Punkt gemeinsam haben, so haben sie noch mindestens einen weiteren Punkt gemeinsam.
Definition I/6: (komplanar)
- Eine Menge von Punkten heißt komplanar, wenn es eine Ebene gibt, die alle Punkte der Menge enthält. Schreibweise: komp(A, B, C, D, ...) (analog nkomp(..) für nicht komplanar)
Axiom I/7
- Es gibt vier Punkte, die nicht komplanar sind.
Weitere Definitionen auf der Grundlage der räumlichen Inzidenzaxiome
Definition I/7: (komplanar für Geraden)
- Zwei Geraden g und h sind komplanar, wenn es eine Ebene gibt, in der beide Geraden vollständig liegen.
- Schreibweise: komp(g, h)
Definition I/8: (Geradenparallelität)
- Zwei Geraden g und h sind parallel, wenn sie identisch oder komplanar und schnittpunktfrei sind.
- In Zeichen: g||h.
Definition I/9: (windschief )
- Zwei Geraden g und h sind windschief, wenn sie schnittpunktfrei und nicht parallel sind.
Definition I/10: (parallel für Ebenen)
- Zwei Ebenen E1 und E2 sind parallel, wenn sie keinen Punkt gemeinsam haben.
- Zwei Ebenen E1 und E2 sind parallel, wenn sie keinen Punkt gemeinsam haben.
Kann ich dann davon ausgehen, dass wenn zwei Ebenen keinen Punkt gemeinsam haben sie dann parallel sind? Steht ja so nicht da.--RicRic 23:09, 5. Dez. 2011 (CET)
Folgerungen aus den Axiomen der räumlichen Inzidenzgeometrie
Satz I.5:
- Zwei voneinander verschiedene Ebenen haben entweder keinen Punkt oder eine Gerade gemeinsam, auf der alle gemeinsamen Punkte beider Ebenen liegen.
Satz I.6:
- Eine Ebene und eine nicht in ihr liegende Gerade haben höchstens einen Punkt gemeinsam.
Satz I.7:
- Jede Ebene enthält (wenigstens) drei Punkte.