Übung 10.11.14: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Aufgabe I.02)
(Aufgabe I.08)
 
(8 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt)
Zeile 1: Zeile 1:
 +
<div style="margin:0; margin-right:4px; border:1px solid #27408B; padding: 1em 1em 1em 1em; background-color:#B9D0F0; align:left;">
 +
{|width=90%| style="background-color:#B9D0F0; padding:1em"
 +
| valign="top" |
 +
<!--- hier drüber nichts eintragen --->
 +
 
= Aufgabe I.01 =
 
= Aufgabe I.01 =
 
Berechnen Sie (ggf. näherungsweise) im Kopf:<br />
 
Berechnen Sie (ggf. näherungsweise) im Kopf:<br />
Zeile 29: Zeile 34:
 
# <math>\sin \frac{\pi}{6}= \cos \frac{\pi}{3} = \frac{1}{2}</math>
 
# <math>\sin \frac{\pi}{6}= \cos \frac{\pi}{3} = \frac{1}{2}</math>
 
# <math>\sin \frac{\pi}{3}= \cos \frac{\pi}{6} = \frac{1}{2} \sqrt{3}</math>
 
# <math>\sin \frac{\pi}{3}= \cos \frac{\pi}{6} = \frac{1}{2} \sqrt{3}</math>
 +
= Aufgabe I.04. =
 +
"Bauen" Sie die folgende App mittels einer Software Ihrer Wahl nach und erklären Sie, was die App darstellen sollen.
 +
<ggb_applet width="788" height="780"  version="4.2" ggbBase64="UEsDBBQACAgIAEZ0aUUAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIAEZ0aUUAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vttb9s4Ev7c/RWEsB+2uMQh9a7C6cJJu7gC2SbY9A7t4b7QEm2zkSWdJDt20D91f2R/0w5JSZYtW4mcN9+hdagXcsh5ZuaZIZ30f11MQzRnacbj6FQjPawhFvlxwKPxqTbLR8eu9uv7n/pjFo/ZMKVoFKdTmp9qZk/XVuPgrmdjMZgHpxp1aOD6unk8JCPr2PQd53iIHXrsYZMRhw0D0wg0hBYZfxfFn+mUZQn12bU/YVN6Efs0lzIneZ68Ozm5vb3tlbP34nR8Mh4Pe4sMBMDKo+xUKy7egbi1QbeG7K5jTE6+/n6hxB/zKMtp5DMNCa1m/P1Pb/q3PAriW3TLg3xyqrnE0tCE8fEE1PSIo6ET0SkBXRPm53zOMhhau5U659NEk91oJN6/UVcorNTRUMDnPGDpqYZ7xLJc3dV17Fqu61kwR5xyFuVFX1LMeVJK6885u1VixZWc0cQejJvzjA9DdqqNaJiBVjwapYAoLCidwW2WL0M2pGl5v1oPOYJ/0IHfMSELTKdgONUMHR+ZunPkYHxkWVitpT6xhvI4DqVUjCwP/fiBdKxjdCQaohodGttWr7B6hg3V6KoxVWOpPqYabqqupupjqj6m0aJncb9StHiwpmmpp1HXk4B+4mPDRwKwoadb05MIJX4gIlYvGwOJdRO5ftGYxa2tbh3ZEKwaUrx0xQ+Jl/1IjYy9NCK1WZU/7J604S/ljI7rPnxG/VF6VloS3WnOqVs7tHwkuNWkVg1amEv+l5/GlEYnPXdC22FG23xM7O8xoYNfYsL+Scl0/SL2UDYRfQt3zdk0E6xjeJJ4EEEWBKbtAE9YiHjQOCJAdUQsZFpwS1xki9ZBhohJExnIRaIfMZCkF8uFH6aMVxtZIEs8dFTgIsNEloGIJCUTARUhSWxAcroBPSwLWTBIzE7EtIaNTBtuDBeZsEBBaY6gDQPGwT1MriODIEOMJQ7SbWTryBG0SEzBlrYr1g5CdWRjZIuhwIvAiYoPYYSLDKENeHgSZ7wCd8LCpLKKxJFHySxfw86fBuVlHm/0DmL/5mwDa0azvLyGTpCMVilPJae1jPimH9IhC6FuuBZugNCchiKCpfxRHOWoimX1bJzSZML97JrlOYzK0Hc6pxc0Z4vfoHdWLlBOLRN1n838kAecRv8EHxEihEBU5m3JS2XedqxiFj+O0+B6mYHjoMW/WBrDAhynpzuWQXRiE92yRb5fqlc2cXvYdVzLtDyCDQ9wznwqPN4ze7ZtEEJs13MNzwXQl9tf2WpiNq8UowuWlUiOUxFMBfbi5lN2FoerR0nMo/ycJvkslSUYUGAqVBpE45BJZCWpQjHj3wzjxbWC1FCyviwTuMNqAcPxeRzGKYJw1C1QcVy0Q9XKPmJlVS8s+2DZA5c24kH1nni67CHboWplLzC6WlqhKSnVJLichmeSREB43cWkx4jSaBbx/KK8ybl/U2hKVP/Ps+kQnK0Yti6SPJHI/smGe/VvWBqxUDlRBJacxbNMeXXlmW/6s4xd0XwyiII/2BjC8YoKRsxBtOq6WnHAfD6Fgep5AR0VZv0HLFU9Ddg4ZaWGoax5FbDyLa67dOOxFPVbGk8/RfMv4DMbS+2flPr0Mz/liXBNNASKvmEr7wt4RoHgg/o4UD4DLXxBNgBkLkDUEJ3lkziVZS2ELAQB+hzPmcAUWJKYmgjXkE2hpkW59Erp2JV9LmWxLAyB4uF3IJEN+61gg9dbPVT6Mg2TCRUFdYFBSJewgDoqUt7vcbCJFZhCKgTEkCinSBhT7qTWCxcJiJNBWLO3BD9DCzUpWhbtndo7qZ2C0FQE5hoFqqcbVgOnUyBJnKdTGgUokhn1nKd+yLQVlVMsUEOUiKUpZGZ5+cJXwgoRDezBhNyvsPXvwb6m7S7w8f7Qr8giB/a/gf0NBKFVoo7Vxd95ELCo0hRInUVzWGkMYYUWuNioLnGJfvlkAegcK8OQ4tEdqZkGjJ7yBRqU/Qdlr4EOA9WVUQgdmKWsgVVcqcX8J1LrzxShiBzIR9zftOe6CaLZlKU1I+TSCADMrICH9EjhKY+JirphyAMNU04bit0pmvJIiplS8HG7p7sGcSFXgtxhFoezHPbpQFHRap+uVlgmYV0ithAbkyI+LHkx4osazwB18Dsg1XWG3OoaertrbEYyTLYlmHEtmFfz+ZBmxUiJws//ntMUCpKf2+PyUyS4HUyzEZq+Cs3FAPJSIzwH6uVZe5SuM+SgGaXlVqXNGWxXeoNohqrZN1BXTKcC4wmprk3vs/v03kFPz6F4qffxkym+SFLwauF0hTYJFNoL8Ntf/Dj7JX97BEVyBO3b0nMV66kKfB228k0l6DVZvZ4WTd22Lc/FjmdgYjlm4ToeNk0ouV3PgEpdt1wJ6GqiPWK/VggVXOzTNGcZlHD3A39VAH+J/oYSbd0Vm2Cv++jVflg/h4t2g/tpaxS5J9ngwTNFdaJS0QVQm1T453/bSVBWsRWQ0HuPNPkAV69Xj+TB6JM9fLUs9FO/BndZhoZhfPsHG4VsIbFc3zLsBv4yheJ7HEc0vIClbFjgqi0T0Xb0hWYVjHRPJn5ySmnkny1OvzeJbJZzfJqE3Of5fmUAbQP/vEv+Pz8U9HcwzL05Ud+LU67ZWDzf7tPnDUiH7ZBmhbQSs+F+xF2enzwpqk2Crnk4oGu4luvYhiG+RsC27jktPu61+zgAForit/JayIPNo4wbxhJxgnQZfUlplIlv+nYTUjOhfi0rmfwI4bcdM+rXg6r6xHnas+3sW8n7axt/BB3IOzgU+tiyeSgz+MvR9UMS5nIr5qwD5uxgSvBi20KqfNkgmwcYQH+JhBko8FkD+A9dkuWHw6SPF6jBL2J/lm1g+kFhmjcwhTDIwOackXu8WgqtzmpXo17Tv+lswUNO02UjcXXnka71R0HLHxqIjrrVH6ODqT+O7ylAwEt14rmW4xieKP3aKPvlq49tZ+WD1N9+XH62ay86bjeePDVPaLoy3/jxAfCory3+787O67njBRxle3Bf7tpcTLoF9+Qx3lF+Ndse3ORhwb36aqq5dbur2+Mgw7mjlXg3K/EDK9L2s9E9VfLr2uhrw0bfu9no+yvzbNNKqqi798Ca4APYiH8rN+L4COVdN+LfXuBrp44sVmH/gvvw1kPUmw57wpvnppsHgvlEZ6hPuidstcC3tl152MEC4bOfhHT052pb/honIbv24aGC+6YB9ccu+/CPh8QeW4+tn4lMtufDwoc/NkCddsuH0/+hytJ0daKLP2/wbIIdp+2k6bULzW1nJx/vPTvR9zo70V81D7zm2UlRFH5rIBp1C4Lo+YvCh+fSjW8IDq4qPKn/1qb8DeriT6je/wVQSwcIDOdm+NEJAADyNQAAUEsBAhQAFAAICAgARnRpRdY3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgICABGdGlFDOdm+NEJAADyNQAADAAAAAAAAAAAAAAAAABdAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAAGgKAAAAAA==" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
 +
= Aufgabe I.05 =
 +
Eine Punktmasse <math>P</math> bewegt sich auf dem Einheitskreis <math>k</math> mit konstanter Winkelgeschwindigkeit <math>\omega</math>. Als Längeneinheit sei wie üblich die SI-Einheit Meter (<math>m</math>) vereinbart. <math>\omega</math> wird in <math>\frac{m}{s}</math> angegeben und kennzeichnet also die Bogenlänge, die <math>P</math> in einer Sekunde auf <math>k</math> zurücklegt. Mit <math>T</math> bezeichnet man die Zeit, die <math>P</math> für einen Kreisumlauf benötigt. Die Bogenlänge <math>s_b</math> ist eine Funktion der Zeit <math>t</math> und kennzeichnet die Länge des Bogens, den <math>P</math> in der Zeit <math>t</math> auf <math>k</math> zurückgelegt hat.
 +
Berechnen Sie fehlenden Werte in der folgenden Tabelle.
 +
{| class="wikitable"
 +
|-
 +
! <math>T</math> in <math>s^{-1}</math> !! <math>\omega</math> in <math>\frac{m}{s}</math> !! <math>t</math> in <math>s</math>!! <math>s_b</math>in <math>m</math>
 +
|-
 +
| <math>1</math>|| ... || <math>5</math>|| ...
 +
|-
 +
| ...|| <math>3</math> || <math>0,5</math>|| ...
 +
|-
 +
| <math>50</math> || ... || ... || <math>1000</math>
 +
|}
 +
 +
= Aufgabe I.06 =
 +
Experimentieren Sie mit der folgenden App und erläutern Sie diese. Geben Sie zusätzlich ein Formel zur Berechnung von <math>\omega</math> aus <math>T</math> an.
 +
 +
<ggb_applet width="849" height="830"  version="4.2" ggbBase64="UEsDBBQACAgIAO57aUUAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIAO57aUUAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vnrjtu4Ff6dfQpCWBTJdsbmXVLqyWIvWHTRJA2aabHoBQUtcWzuyJJWoj12kB/7Ny/UF+gD5JV6SEq2xnOfSZNgk8xQlMjDc77z8eORMvl6vSjQSjetqcqjiIxwhHSZVbkpZ0fR0p4cJtHXz76YzHQ109NGoZOqWSh7FPERjXbzoDeS2E02OVhhmSK5FIdC5uSQpyfyMGGxOEyZmgpxIqnmIkJo3ZqnZfVSLXRbq0y/zuZ6oZ5XmbLe5tza+ul4fHZ2NupXH1XNbDybTUfrNo8QeF62R1F38RTMnZt0xvxwijEZ//TieTB/aMrWqjLTEXJRLc2zLx5NzkyZV2fozOR2fhQlsYzQXJvZHMJMZRyhsRtUQ6y1zqxZ6RamDro+ZruoIz9Mle75o3CFim04EcrNyuS6OYrwiNKEESxw10aoaowubTeUdEuOe2OTldFnwaq78gtynIJrK9OaaaGPohNVtBCUKU8aABT8aZbQbe2m0FPV9P2dO+QA/sIA80Y7W5C5gMJRJHhyQBN5EGN8IAQOvgwXjpCtqsJbxUik6O1bRDHF6MA1JDQUGinDIxzuYRYaGhoeGhHG8DCdh6E8jOFhDGfXxNn1d4F2N85F2sfJhnESiM/9SPjxAOzFmQziJC6It4g4733DkPObeP9dw7uuDN3YNwSHhnQPE/fL4yUfGBG7V0RksGrgw9WLXuBLv2LC09uvSB8U5zZKelmUVFwR5QPB7RclYrgpYC+4f/7nwpLsTnFeCe0dVpT8IXv/HgvG+GMsOBn3Sjfp9h5q525sR1erF61THZZ64UEECdiYMgadEIik0MRug1JEBOICuiRB0rUxYm5PcsRQgtw4wpCXF5HAL+73q0QCbLmbcdi4iHEkGCJelDgCKUJe2EDkKIMRQiABk9zqxC3LJOISOixBHBx0khY72WAwD/qwOEWMIObmkhhRiSRFsZNFwp1aysT5DkYpkhhJNxV0ETQx6CHMSBBz0QDD66o1W3Dnuqi3WfE4mrJe2nPYZYu8v7TV3ui8yk6/3cNaq9b21zAIDqPdiRcOp3MH4qNJoaa6gLLhtaMBQitVuB3s7Z9UpUU9BWi4N2tUPTdZ+1pbC7Na9LNaqefK6vUPMLrtHfRL+3N6opdZYXKjyr8BR5wJZxBtj22nS/2xneBulayqmvz1pgXioPXfdVM5/aAjzkiCSSppAqcoHKOb8EimfERwEseYxJgLDji3mXKMl8mIUcloQkB24A9s+M0Vj0RYWa+2kam1bnsoZ43bTR34rvNj+21V7G7VlSntd6q2y8aXYKCBjYvpm3JWaA+tV1UoZrLTabV+HTBlwdbxpoYeDg5MZ99VRdUg2I9UQIkx69ppaP0Y59l2FPZjsB+B+ySZfPucpNSP8O00tH4UZD241kVK+jAJ7pcxrVcRMD7kmKeMK42WpbHP+4412WkXKQnjXy4XU2BbN+28SfKBTE7Ge/yanOqm1EVgUQmZXFbLNtB6S81Hk2WrXyk7/6bM/6JnsB9fKSeJFkyHoTuPc52ZBUwM9zvolEvrX8HVcDfXs0b3ERa+5g3A+qd4yOkLt72pH5pq8WO5OgbO7Lk6GffxTNqsMbWjJpqCRp/qHfty0ypQ+Hw4D4JvIYrMqQ0AaR2IEVJLO68aX9bCnoVCGb2sVtphCjJJeOT2a6EXUNQi61lZLhe6Mdk2Q8e+XAYfl10YfNQF4tKDqunPoC17Wd2BCY+v4C1SRT1XrsgmHTvVBpwaIuWtvajybuFuXFu46hwtTNDUhVp7AiM1batiaeH9BFJT7t5Pgmed+kBB4t5+YApj1F1t4Iq4kNCJWQ8QBtDMG6DTeW7sdpAFTTyFqr/129x2G9pf/NHkuS63/qoS6OSTAupWB2LXWoctsZ1YQ/heSAZE6BJzY4rsxRQl7LPJEb5rjsQgR6TPEaj3R8wROHBDmgZytMvSum5gNWemA/n9Ozig12CQoq/Q+1/RGB2HU/r6hMK0vYySkYhxnMLxJeOUJ6mUd8zd9X7WnZuPs6p9/P4dOGufHEAhUPadJz0GK2BS1VwWRP9ka/J6/g20+f9AQK+9reMQvMRLlsQM8zSVgsWMe0LhUSq5EDEnCRdxnMJb5Buf9/uTaKD3bTjDMtVY3cJJdXMGXvUZwAcIP0G/R3W/mK80LgO8e7A1cJ/9LhOPt2umodkijm+JOH4Q4qRfx0fjyqRzFWm4u3eGDpHMqsVClTkq/QsOKMqyjXaFtcIeWUWcSIbgl7Z/8OfGgk6VRncbpDN1AefCG+1xHMz6oAS/I9xquTaFUc3mQqVzd+rewMx/r3tu2ss14bYMBUOfC0f9CflJWelQvYGX9F68pL9JXu4hCrYu3+YO131A1Q04OmM9OuqTojcU0VD48JGQklCZQlXEuKSx5+chH3HMaUokZTQWaZzcBmN6+bmlfynPnVpmURcmM/Y20rC5tHCwd5eGzWcjDVccX0ExPrw2XMPkzQUmT+/A5OlnwuRDNkqk4JyKhAhOqf8m0xE8wEnSNAGOMxBgIWP5Eah8G33e3KjP7F76zH6T+nxRHI712pJOHn73y7Kyf/jyn9VCz9TRl6ELRe7j5+pY//SP9+/+5UrecDv8vkwzLFiMzpv/lFCa1nu///3If0Rt4X3uZPvBHTTiRfeftuHjKo56hvbfUiy8Krxy0oHcnqEjlgoQdy4JXIDIdxIk05gQ2Cw8wYwSPtSjm5NBzyXje6PRrNAmm5/89z/Nwsw0+lOjTTvVZ3q2LGddGm6RhU9bcFxEDktCKCAkKGYs9sjFIzgiQWdYwmhKBU6vQm48/IrmP2l3/6X97H9QSwcIeJKgED8IAACCHwAAUEsBAhQAFAAICAgA7ntpRdY3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgICADue2lFeJKgED8IAACCHwAADAAAAAAAAAAAAAAAAABdAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAANYIAAAAAA==" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
 +
 +
= Aufgabe I.07 =
 +
Bauen Sie die folgende App nach und erläutern Sie die Entseheung von Lissajousfiguren.
 +
 +
<ggb_applet width="849" height="830"  version="4.2" ggbBase64="UEsDBBQACAgIAGiFaUUAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIAGiFaUUAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s5Vpbb9vIFX7O/ooBsSiS1pbmxiGZyllkF1hsACc1ardY9IJgRI6kiSlSSw5lKchDX/vr9i/1zAwp0ZLvbu20TSKPhpw5c853vnMhndF3q3mOlqqqdVkcBWSAA6SKtMx0MT0KGjM5jIPv3nwzmqpyqsaVRJOymktzFPABDbb7YDYQ2G7WGUhhqSSZCA9DkZFDnkzEYcyi8DBhchyGE0EVDwOEVrV+XZQf5FzVC5mq03Sm5vK4TKVxMmfGLF4PhxcXF4Pu9EFZTYfT6XiwqrMAgeZFfRS0X16DuEubLphbTjEmw5/fH3vxh7qojSxSFSBrVaPffPNidKGLrLxAFzozs6MgjkSAZkpPZ2BmIqIADe2iBdi6UKnRS1XD1t7U2Wzmi8Atk4W9/8J/Q/nGnABleqkzVR0FeEBpzAgOcTsGqKy0Kky7lLRHDjtho6VWF16q/eYO5DgB1Za61uNcHQUTmddglC4mFQAK+lQNTGuzztVYVt18qw45gL+wQH9WVhZ4zqNwFIQ8PqCxOIgwPghD7HXpHxwgU5a5k4pRmKAvXxDFFKMDOxA/UBiE8Lewv4aZH6gfuB9Cv4b77dwv5X4N92s4u8HOdr41tL1wydLOTta3k4B99iPg4wDYsTPu2UmsEV8Qsdq7gSGrN3H624G3U+GnkRsI9gNpb8b2h8NLPNIi9iCLSO9Uz4frD93jS3dizJO7n0gfZefGSnqVlTS8xspHgtsdSsJ+UEAs2H/us3cku5ed10J7jxMFf0zsP+DACD/FgaNhl+lGbeyhembXtnQ1al7brMMSl3gQQSEEpoggT4SIJDBENkApIiHiIUxJjIQdI8RsTHLEUIzsOsKQSy9hDD+4i1eBQpBlL0Y+cBHjKGSIuKTEEaQi5BIbJDnKYEUYohA22dOJPZYJxAVMWIw4KGhTWmTTBoN9MIfDKWIEMbuXRIgKJCiKbFok3GZLEVvdQShFAiNht0JehJzo8yHsiBGz1gDDF2WtN+DOVL7YeMXhqItFYy5hl86z7qspd1ZnZXr+/Q7WStam+w6LoBhtK54vTpcK4otRLscqh7bh1NIAoaXMbQQ7+ZOyMKijAPXXppVczHRanypjYFeNPsmlPJZGrX6E1XWnoDva1emRatJcZ1oWfwaOWBFWINqUbZuXurId4/aUtCyr7HRdA3HQ6i+qKm3+oAPOSIxJImgMVRTK6NrfEgkfEBxHESYR5iEHnOtUWsaLeMCoYDQmkHbgDwT8+ppboT9ZLTeWyZWqOyinlY2mFnw7eVd/X+bbS4tSF+YHuTBN5VowyIGVteltMc2Vg9ZlVWhm0vNxuTr1mDIv62y9gBn2CoynP5R5WSGIRxpCizFtx7Ef3Rqr2WYVdmuwW4E7J+lsc58k1K1w49iPbhV43avWWko6MwnujtG1yyIgvM8xRxnbGjWFNsfdxOj0vLWU+PUfmvkY2NZuuyyS/JtEjoY7/Bqdq6pQuWdRAZ5syqb2tN5Q88WoqdWJNLO3RfZHNYV4PJE2JRoQ7ZduNc5Uquew0V9voZPWrX8CVf3VTE0r1VmYu57XA+vu4j6n9y47UT9W5fxdsTwDzuyoOhp29ozqtNILS000hhx9rrbsy3QtIcNn/X1gfA1WpDbbAJDGghgg2ZhZWbm2FmIWGmX0oVwqiymkScIDG6+5mkNTi4xjZdHMVaXTjYfOPq5dwwxaNq0hyaA1xToIleNPkF12/LqFE25fw1wk88VM2jabtPyUa1Crj5WT9r7M2oPbdXVu+3M01z6rzuXKURjJcV3mjYEnFHBOsX1C8Zq1+QdaEvv8s7LRFdtva9udhfbbRK96GANs+jMQ6jI7tjFkICueQ99fu0A3bUi7Lz/pLFPFRl9ZAKGcWyC/LTy1F0r5oNhsXID5LpX0qNC6xjpptajgLCukhfjXf4JnEFyH89Fv0a//QENkneWqwM0+dVt3nIoHIokJg4SKI8i1kHjv6b9L2t54vNk9Wwwo/2oYhVtGibsyKtwySpCWUQQq1BMyChTAt7Cqlz/v6Kazj6tdR4X/I5Hv34GsbQ5g/5WRv9qP/NUdI3/PqWRAQyFYhAXhLExIRB8T+XvanmyUfWkOoLksXlolQG/z6lUHguumrtK/vdET9RD2idipb4exHzYG4DsSsF/Ta8shl7MshfAggT+UYM4pZjER4NrP/hWdfyFlTbD936VW21/daQ76QKblfC6LDBXuyQ0o3dTB9olB4hZYSWw+9RY3prv1h8pAqBRaUS+2FbYHb+7EduD1dt2Mcq+vugtJ7omxbFY617Ja7zVx9w/B26jZVdCXaVlbXq4dLw/gc29qrr8aah7iAeNxGFHMI0ZJTNwT0rrj7BORc30rOdmDyMn+T8h5plaGtvT8zS9NaX5/rOtafoKnm4meNpUq/NVgn5rwcL5lppfznJjVRlbmxHIKueo7YFBqCOUxDiFjsshxMxokkX3WZzGjCTyhJ32i3o4UuYTUt38r52oqP66OvvUX0O/Qy2N5pn7+qy0+f38Fc3+jxfCK+N4DkTwriLp2+u8+rbpXNjXU+Mnm9R5E8/v2V0T+VQ5u3/ld5xA+oAwgZwmPEhyHrM0VgjMhcBzFjHNBwuv8sZMLIAquq1Ortytd76WD9JYsYAV2EKfP6oJthu3aRwfyZ5dx95qABzeN6pfCb2mdpueLXKfaPAD4NgevrwQ+uwfw2VcC/GH3gIW3yO/XuieG/l1h3yMBKDv4px79bA/5k5uR3+ksvv6+4vla4Ft7DPKgHuN5U/3T9hjsysq5vrJyrh9WOZ+3ZfvPVs6QhTHFJGKCxdSXznAAdZRRnlAaJdDniOtK57D/ztb9AqX9DxRv/gVQSwcIvX6EI1QIAADwIQAAUEsBAhQAFAAICAgAaIVpRdY3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgICABohWlFvX6EI1QIAADwIQAADAAAAAAAAAAAAAAAAABdAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAAOsIAAAAAA==" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
 +
 +
= Aufgabe I.08 =
 +
<iframe src="http://www.ph-heidelberg.de/wp/gieding/Lehre/cg/beispiele/videos/Lissajous_5zu3.swf" width="400" height="300" frameborder="2"></iframe>
 +
 +
Hier schwingt ein Pendel an einem zweiten. Sie dürfen die beiden Pendel als mathematische Pendel modellieren (Wikipedia hilft). Geben Sie eine allgemeine Parameterdarstellung der gezeichneten Kurve an.
 +
 +
<!--- hier drunter nichts eintragen --->
 +
[[Kategorie:Linalg]]
 +
 +
|}
 +
</div>

Aktuelle Version vom 9. November 2014, 17:16 Uhr

Inhaltsverzeichnis

Aufgabe I.01

Berechnen Sie (ggf. näherungsweise) im Kopf:

Gradmaß Bogenmaß
90^\circ ...
45^\circ ...
15^\circ ...
... \frac{3}{2} \pi
-30^\circ ...
... \frac{9}{2}
10^\circ ...
-100^\circ ...
... 1

Aufgabe I.02

Generieren Sie ein Tabellenkalkulationsblatt, in dem die Tabelle aus Aufgabe I.01 automatisch berechnet wird. Bedingung: Sie dürfen die Funktion "Bogenmaß()" nicht verwenden.

Aufgabe I.03

Beweisen Sie:

  1. \sin \frac{\pi}{6}= \cos \frac{\pi}{3} = \frac{1}{2}
  2. \sin \frac{\pi}{3}= \cos \frac{\pi}{6} = \frac{1}{2} \sqrt{3}

Aufgabe I.04.

"Bauen" Sie die folgende App mittels einer Software Ihrer Wahl nach und erklären Sie, was die App darstellen sollen.

Aufgabe I.05

Eine Punktmasse P bewegt sich auf dem Einheitskreis k mit konstanter Winkelgeschwindigkeit \omega. Als Längeneinheit sei wie üblich die SI-Einheit Meter (m) vereinbart. \omega wird in \frac{m}{s} angegeben und kennzeichnet also die Bogenlänge, die P in einer Sekunde auf k zurücklegt. Mit T bezeichnet man die Zeit, die P für einen Kreisumlauf benötigt. Die Bogenlänge s_b ist eine Funktion der Zeit t und kennzeichnet die Länge des Bogens, den P in der Zeit t auf k zurückgelegt hat. Berechnen Sie fehlenden Werte in der folgenden Tabelle.

T in s^{-1} \omega in \frac{m}{s} t in s s_bin m
1 ... 5 ...
... 3 0,5 ...
50 ... ... 1000

Aufgabe I.06

Experimentieren Sie mit der folgenden App und erläutern Sie diese. Geben Sie zusätzlich ein Formel zur Berechnung von \omega aus T an.

Aufgabe I.07

Bauen Sie die folgende App nach und erläutern Sie die Entseheung von Lissajousfiguren.

Aufgabe I.08

[ www.ph-heidelberg.de is not an authorized iframe site ]

Hier schwingt ein Pendel an einem zweiten. Sie dürfen die beiden Pendel als mathematische Pendel modellieren (Wikipedia hilft). Geben Sie eine allgemeine Parameterdarstellung der gezeichneten Kurve an.