Tangentenkriterium: Unterschied zwischen den Versionen
(→Satz 1: (Tangete am Kreis)) |
(→Satz 2: (Tangente am Kreis)) |
||
(6 dazwischenliegende Versionen von 4 Benutzern werden nicht angezeigt) | |||
Zeile 17: | Zeile 17: | ||
| 1 || Es existiert ein Lot von M auf t, dieses ist eindeutig. Der Lotfußpunkt auf k heiße B. || Ex. und Eindeutigkeit Lot, Annahme, Voraussetzung | | 1 || Es existiert ein Lot von M auf t, dieses ist eindeutig. Der Lotfußpunkt auf k heiße B. || Ex. und Eindeutigkeit Lot, Annahme, Voraussetzung | ||
|- | |- | ||
− | | 2 || Es existiert genau ein Punkt C für den gilt, dass o. B. d. A. <math>\operatorname(Zw) (C, B, A)</math> und |CB| = |BA| || Axiom vom Lineal, Abstandsaxiom, Definition zwischenrelation, Voraussetzung, (1) und Skizze | + | | 2 || Es existiert genau ein Punkt C für den gilt, dass o. B. d. A. <math>\operatorname(Zw) (C, B, A)</math> und <math>|CB| = |BA|</math> || Axiom vom Lineal, Abstandsaxiom, Definition zwischenrelation, Voraussetzung, (1) und Skizze |
|- | |- | ||
| 3 || <math>|\angle MBA | = |\angle MBC| = 90</math> || nach Konstruktion, Def. NW, Def. supplementär, Supplementaxiom, Def. Lot (1) | | 3 || <math>|\angle MBA | = |\angle MBC| = 90</math> || nach Konstruktion, Def. NW, Def. supplementär, Supplementaxiom, Def. Lot (1) | ||
Zeile 23: | Zeile 23: | ||
| 4 || <math>\overline{MBA} \cong \overline{MBC} </math> || SWS, (2), (3) und weil trivialerweise <math> \overline{MB}</math> zu sich selbst kongruent ist. | | 4 || <math>\overline{MBA} \cong \overline{MBC} </math> || SWS, (2), (3) und weil trivialerweise <math> \overline{MB}</math> zu sich selbst kongruent ist. | ||
|- | |- | ||
− | | 5 || Somit ist nach der Dreieckskongruenz und aus (4) |MC| = |MA| = r nach Voraussetzung und es ergeben sich zwei Schnittpunkte, was ein Widerspruch zur Voraussetzung ist. | + | | 5 || Somit ist nach der Dreieckskongruenz und aus (4) <math>|MC| = |MA| = r</math> nach Voraussetzung und es ergeben sich zwei Schnittpunkte, was ein Widerspruch zur Voraussetzung ist. |
|} | |} | ||
<br /> | <br /> | ||
Zeile 30: | Zeile 30: | ||
--[[Benutzer:HecklF|Flo60]] 10:53, 24. Jul. 2011 (CEST)<br /> | --[[Benutzer:HecklF|Flo60]] 10:53, 24. Jul. 2011 (CEST)<br /> | ||
Beweisidee und Begründung ist richtig. Schöner wäre der Beweis sicher, wenn du mehrer kleinen Schritte aufführst, anstatt mit 6 Begründungen einen riesen Schritt durchführst.--[[Benutzer:Tutorin Anne|Tutorin Anne]] 16:31, 24. Jul. 2011 (CEST) | Beweisidee und Begründung ist richtig. Schöner wäre der Beweis sicher, wenn du mehrer kleinen Schritte aufführst, anstatt mit 6 Begründungen einen riesen Schritt durchführst.--[[Benutzer:Tutorin Anne|Tutorin Anne]] 16:31, 24. Jul. 2011 (CEST) | ||
+ | <br /> | ||
+ | <br /> | ||
+ | Danke für den Hinweis, das Wiki streicht viele Aspekte heraus, wenn man mit "|" in der Tabelle arbeitet - ich habs geändert. --[[Benutzer:HecklF|Flo60]] 19:14, 24. Jul. 2011 (CEST) | ||
===== Satz 2: (Tangente am Kreis) ===== | ===== Satz 2: (Tangente am Kreis) ===== | ||
− | ::<math>MA \perp \ t \wedge | + | ::<math>MA \perp \ t \wedge </math> t schneidet k im Punkt A <math> \Rightarrow </math> t ist Tangente an k. <br /> |
<br /> | <br /> | ||
<br /> | <br /> | ||
Eigentlich erscheint dieser Beweis komisch. Allerdings könnte es ja sein, dass wenn eine Gerade durch eben einen Punkt A verläuft und senkrecht auf dem Berührradius steht, dass dann trotzdem ein zweiter Schnittpunkt vorhanden ist mit k und dann wäre halt t keine Tangente mehr. | Eigentlich erscheint dieser Beweis komisch. Allerdings könnte es ja sein, dass wenn eine Gerade durch eben einen Punkt A verläuft und senkrecht auf dem Berührradius steht, dass dann trotzdem ein zweiter Schnittpunkt vorhanden ist mit k und dann wäre halt t keine Tangente mehr. | ||
+ | <br /><br /> | ||
+ | Einschub von --[[Benutzer:WikiNutzer|WikiNutzer]] 13:21, 26. Jul. 2011 (CEST): Wenn in der Voraussetzung steht: ::<math>MA \perp \ t \wedge k \cap t = \lbrace A\rbrace </math>, heißt das dann nicht schon, dass es nur einen Schnittpunkt von t und k gibt? Vermutlich ist aber genau das zu beweisen, denn dass eine Gerade, die einen Kreis in genau einem Punkt schneidet, Tangente heißt, ist doch Definition und nicht Satz. Vielleicht wäre ::<math>MA \perp \ t \wedge \lbrace A\rbrace \in k \cap t | ||
+ | </math> besser in der Voraussetzung? [Einschub von --[[Benutzer:WikiNutzer|WikiNutzer]] 13:21, 26. Jul. 2011 (CEST) Ende] | ||
<br /> | <br /> | ||
<br /> | <br /> | ||
− | Voraussetzung: <math>MA \perp \ t \wedge k \cap t = \lbrace A\rbrace </math><br /> | + | Da hast du aus meiner Sicht vollkommen recht. Ich habe es abgeändert (in Worten, deines wäre denke ich genauso richtig gewesen). --[[Benutzer:HecklF|Flo60]] 21:42, 27. Jul. 2011 (CEST) |
+ | <br /><br /> | ||
+ | Voraussetzung: <math>MA \perp \ t \wedge k \cap t = \lbrace A\rbrace </math><br /> | ||
Behauptung: t ist Tangente an k <br /> | Behauptung: t ist Tangente an k <br /> | ||
Annahme: Es ex. ein Punkt S: <math>S \neq A \wedge \ t \cap k = \lbrace S\rbrace</math> | Annahme: Es ex. ein Punkt S: <math>S \neq A \wedge \ t \cap k = \lbrace S\rbrace</math> | ||
Zeile 57: | Zeile 65: | ||
<ggb_applet width="1366" height="604" version="3.2" ggbBase64="UEsDBBQACAAIALdV+D4AAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s1VhNb+M2ED13fwXBQ29x9GE7NmploaaXAJumgNM99FJQ0thmI1Fakkpk//oOScmW7SR1ki2aBggkzoyGM+/NjCjPPjdFTh5AKl6KiPoDjxIQaZlxsYxorRdnE/r58tNsCeUSEsnIopQF0xENBwE18ppffvphplblI2G5NfnK4TGiC5YroERVElimVgB6T87qhuecyfVt8hekWu0Uzsm1qGrcRcsaZWmRfeGqW57bDauc61/4A89AkrxMIzoeYeh49xWk5inLIzr0nCSIaHCgRFFotKtS8k0ptDHfOc9ZAjkCMNfrHAh5MNrQqRZoTIjiG0CwAiObnVsMZlCnOc84EyZPGyIaEfLIM71C23A8xu2AL1eYx9gLnLu0LGU2XysNBWn+AFlGdDSZGBLWbhUGF2alMGbcceRZVX9l3cDDHLTGiBVhDezAXEqe7S2u1c9lvhNVJRf6ilW6lpbvsBXZxCOKe0kTcCyWObSyAOlYQXqflM3coRA613fryj5iA0qWV2VeSiIN9CM0aK+Ju1obE+nWyrM2nrVofRinW70/DayFvSbu6rjiwoXWZu53Wftetw1XxAgMjFim2+QtyxGlpBZcf+kWWB73baq+e+DXukiwP/oFsvXpfy+fs/OD+pndgxSQuyIRyG1d1sqVotvLBpJBygtcOkULCTN0/Y4BOGkGSwld4K67HGBW6/UL8UA8O++CMDEojDXVOCYwH21yMV2ssYPMXca0kZg+yKEAbBJt68HQs4VF033G9AqBEaCULSvdLyA7UEo7G7op0DnZsoDqZ+oHp0i1YnjXNUjO1jgn+glbb7eLhQJNmohOTF9F9GzY096U2T5ITCDYFgFs2Mq4N3RWAFk7ObsUSIUb2o7qcWUhVmYz18XtM5t+mKdAA9+Es1GupKDBWZhy3ZaRg99SVhRMZESwAq1+M31t8edmtBLmRXQdYx23WNa6k944R+3jR4zaAbFl44a+hS0/cDPBXtuZcCpn/zorQcuK3wXiRqKZ5rs3QR/ol/CJ//SPEdofFv9c0B8CnrPwoGpPxme/EK+4THM4qMQbzM93aB2WY/pyOeJg4ukWy/R7TJhe+u8fMUd8nNbjfAniAUMrpSKk8VrU115bpptO0iBqZ65y/Y4av8cNUi95Q+LOPu6sYjwCnY0H3t4fhhGH7RbxsPMcj/AuGDwzfrCUUr7g6cusXwuN7ztM6ID41BGPDcOCXtg9/uPXjKP4TeNoPLTUmkviLm8lt9cuwWA4nA4n04thcDEJffy33eO9r3tOwzF4Asf5a3Ccfxgcj2CcuBf1O3Gcw9LInxlDR+AlL4OnWm8dPMnHH0N9hNuzz1MViwgPB5MpClEzGo3H4ejiHWcVXuzOKhbg3LxxtkWNb6njM+49QGU+Lm7FnWRCmQ9QZ9M7O7+F5fkRy9nrWM7+jyw/1U8bc/A9ZHn0kWnGM6/ESMyppsXxDhqNBxtURPTHb3Wpf8JvfZWuOCQYOtZDuiLmqx6XYuAMrNN9ijV6ofsu/0v6lGZS25M7MRyGg8nFtP/X9a23Lx73J2MftvP+Z5z96aL9Wefyb1BLBwgVjlAWlgQAAAgSAABQSwECFAAUAAgACAC3Vfg+FY5QFpYEAAAIEgAADAAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAABAAEAOgAAANAEAAAAAA==" framePossible = "false" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" /> | <ggb_applet width="1366" height="604" version="3.2" ggbBase64="UEsDBBQACAAIALdV+D4AAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s1VhNb+M2ED13fwXBQ29x9GE7NmploaaXAJumgNM99FJQ0thmI1Fakkpk//oOScmW7SR1ki2aBggkzoyGM+/NjCjPPjdFTh5AKl6KiPoDjxIQaZlxsYxorRdnE/r58tNsCeUSEsnIopQF0xENBwE18ppffvphplblI2G5NfnK4TGiC5YroERVElimVgB6T87qhuecyfVt8hekWu0Uzsm1qGrcRcsaZWmRfeGqW57bDauc61/4A89AkrxMIzoeYeh49xWk5inLIzr0nCSIaHCgRFFotKtS8k0ptDHfOc9ZAjkCMNfrHAh5MNrQqRZoTIjiG0CwAiObnVsMZlCnOc84EyZPGyIaEfLIM71C23A8xu2AL1eYx9gLnLu0LGU2XysNBWn+AFlGdDSZGBLWbhUGF2alMGbcceRZVX9l3cDDHLTGiBVhDezAXEqe7S2u1c9lvhNVJRf6ilW6lpbvsBXZxCOKe0kTcCyWObSyAOlYQXqflM3coRA613fryj5iA0qWV2VeSiIN9CM0aK+Ju1obE+nWyrM2nrVofRinW70/DayFvSbu6rjiwoXWZu53Wftetw1XxAgMjFim2+QtyxGlpBZcf+kWWB73baq+e+DXukiwP/oFsvXpfy+fs/OD+pndgxSQuyIRyG1d1sqVotvLBpJBygtcOkULCTN0/Y4BOGkGSwld4K67HGBW6/UL8UA8O++CMDEojDXVOCYwH21yMV2ssYPMXca0kZg+yKEAbBJt68HQs4VF033G9AqBEaCULSvdLyA7UEo7G7op0DnZsoDqZ+oHp0i1YnjXNUjO1jgn+glbb7eLhQJNmohOTF9F9GzY096U2T5ITCDYFgFs2Mq4N3RWAFk7ObsUSIUb2o7qcWUhVmYz18XtM5t+mKdAA9+Es1GupKDBWZhy3ZaRg99SVhRMZESwAq1+M31t8edmtBLmRXQdYx23WNa6k944R+3jR4zaAbFl44a+hS0/cDPBXtuZcCpn/zorQcuK3wXiRqKZ5rs3QR/ol/CJ//SPEdofFv9c0B8CnrPwoGpPxme/EK+4THM4qMQbzM93aB2WY/pyOeJg4ukWy/R7TJhe+u8fMUd8nNbjfAniAUMrpSKk8VrU115bpptO0iBqZ65y/Y4av8cNUi95Q+LOPu6sYjwCnY0H3t4fhhGH7RbxsPMcj/AuGDwzfrCUUr7g6cusXwuN7ztM6ID41BGPDcOCXtg9/uPXjKP4TeNoPLTUmkviLm8lt9cuwWA4nA4n04thcDEJffy33eO9r3tOwzF4Asf5a3Ccfxgcj2CcuBf1O3Gcw9LInxlDR+AlL4OnWm8dPMnHH0N9hNuzz1MViwgPB5MpClEzGo3H4ejiHWcVXuzOKhbg3LxxtkWNb6njM+49QGU+Lm7FnWRCmQ9QZ9M7O7+F5fkRy9nrWM7+jyw/1U8bc/A9ZHn0kWnGM6/ESMyppsXxDhqNBxtURPTHb3Wpf8JvfZWuOCQYOtZDuiLmqx6XYuAMrNN9ijV6ofsu/0v6lGZS25M7MRyGg8nFtP/X9a23Lx73J2MftvP+Z5z96aL9Wefyb1BLBwgVjlAWlgQAAAgSAABQSwECFAAUAAgACAC3Vfg+FY5QFpYEAAAIEgAADAAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAABAAEAOgAAANAEAAAAAA==" framePossible = "false" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" /> | ||
<br />--[[Benutzer:HecklF|Flo60]] 10:53, 24. Jul. 2011 (CEST) | <br />--[[Benutzer:HecklF|Flo60]] 10:53, 24. Jul. 2011 (CEST) | ||
+ | Gut! Aber auch hier lieber ein paar Schritte mehr!--[[Benutzer:Tutorin Anne|Tutorin Anne]] 16:34, 24. Jul. 2011 (CEST) | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | Wieso wird bei der Umkehrung eine Senkrechte auf dem Radius ausgeschlossen? Die Umkehrung lautet doch: Wenn t senkrecht auf MA, dann ist t Tangente. Und t kann doch Senkrecht auf MA stehen und den Kreis zweimal schneiden? | ||
+ | --[[Benutzer:Verteidigungswolf|Verteidigungswolf]] 17:44, 26. Jul. 2011 (CEST) Du hast recht, die Voraussetzung ist nicht richtig. Es darf nicht angegeben werden, dass Kreis und Gerade genau einen Schnittpunkt A haben. --[[Benutzer:Tutorin Anne|Tutorin Anne]] 18:38, 28. Jul. 2011 (CEST) |
Aktuelle Version vom 28. Juli 2011, 17:38 Uhr
Inhaltsverzeichnis |
Tangentenkriterium
Kriterium: (Tangete am Kreis)
- Eine Gerade t, die durch einen Punkt A eines Kreises k mit dem Mittelpunkt M verläuft, ist genau dann Tangente an k, wenn t senkrecht auf MA steht.
- Eine Gerade t, die durch einen Punkt A eines Kreises k mit dem Mittelpunkt M verläuft, ist genau dann Tangente an k, wenn t senkrecht auf MA steht.
Satz 1: (Tangete am Kreis)
Beweis durch Wiederspruch:
Voraussetzung:
Behauptung:
Annahme:
1 | Es existiert ein Lot von M auf t, dieses ist eindeutig. Der Lotfußpunkt auf k heiße B. | Ex. und Eindeutigkeit Lot, Annahme, Voraussetzung |
2 | Es existiert genau ein Punkt C für den gilt, dass o. B. d. A. und | Axiom vom Lineal, Abstandsaxiom, Definition zwischenrelation, Voraussetzung, (1) und Skizze |
3 | nach Konstruktion, Def. NW, Def. supplementär, Supplementaxiom, Def. Lot (1) | |
4 | SWS, (2), (3) und weil trivialerweise zu sich selbst kongruent ist. | |
5 | Somit ist nach der Dreieckskongruenz und aus (4) nach Voraussetzung und es ergeben sich zwei Schnittpunkte, was ein Widerspruch zur Voraussetzung ist. |
--Flo60 10:53, 24. Jul. 2011 (CEST)
Beweisidee und Begründung ist richtig. Schöner wäre der Beweis sicher, wenn du mehrer kleinen Schritte aufführst, anstatt mit 6 Begründungen einen riesen Schritt durchführst.--Tutorin Anne 16:31, 24. Jul. 2011 (CEST)
Danke für den Hinweis, das Wiki streicht viele Aspekte heraus, wenn man mit "|" in der Tabelle arbeitet - ich habs geändert. --Flo60 19:14, 24. Jul. 2011 (CEST)
Satz 2: (Tangente am Kreis)
- t schneidet k im Punkt A t ist Tangente an k.
- t schneidet k im Punkt A t ist Tangente an k.
Eigentlich erscheint dieser Beweis komisch. Allerdings könnte es ja sein, dass wenn eine Gerade durch eben einen Punkt A verläuft und senkrecht auf dem Berührradius steht, dass dann trotzdem ein zweiter Schnittpunkt vorhanden ist mit k und dann wäre halt t keine Tangente mehr.
Einschub von --WikiNutzer 13:21, 26. Jul. 2011 (CEST): Wenn in der Voraussetzung steht: ::, heißt das dann nicht schon, dass es nur einen Schnittpunkt von t und k gibt? Vermutlich ist aber genau das zu beweisen, denn dass eine Gerade, die einen Kreis in genau einem Punkt schneidet, Tangente heißt, ist doch Definition und nicht Satz. Vielleicht wäre :: besser in der Voraussetzung? [Einschub von --WikiNutzer 13:21, 26. Jul. 2011 (CEST) Ende]
Da hast du aus meiner Sicht vollkommen recht. Ich habe es abgeändert (in Worten, deines wäre denke ich genauso richtig gewesen). --Flo60 21:42, 27. Jul. 2011 (CEST)
Voraussetzung:
Behauptung: t ist Tangente an k
Annahme: Es ex. ein Punkt S:
Ich versuche diesen Beweis bewusst in der absoluten Geometrie zu Beweisen. Mit der Innenwinklesumme wäre es natürlich noch einfacher, aber zwecks der Übung.
1 | Annahme, Definiton Kreis und Radius | |
2 | Voraussetzung, Basiswinkelsatz, (1), Def. Senkrecht | |
3 | Demnach sind im Dreieck zwei Winkel nicht spitz, was ein Widerspruch zu einem der Korollare ist. Demnach ist die Annahme zu verwerfen. | Korollar des schwachen Außenwinkelsatzes, (2), Definition Dreieck |
--Flo60 10:53, 24. Jul. 2011 (CEST)
Gut! Aber auch hier lieber ein paar Schritte mehr!--Tutorin Anne 16:34, 24. Jul. 2011 (CEST)
Wieso wird bei der Umkehrung eine Senkrechte auf dem Radius ausgeschlossen? Die Umkehrung lautet doch: Wenn t senkrecht auf MA, dann ist t Tangente. Und t kann doch Senkrecht auf MA stehen und den Kreis zweimal schneiden?
--Verteidigungswolf 17:44, 26. Jul. 2011 (CEST) Du hast recht, die Voraussetzung ist nicht richtig. Es darf nicht angegeben werden, dass Kreis und Gerade genau einen Schnittpunkt A haben. --Tutorin Anne 18:38, 28. Jul. 2011 (CEST)