Tangentenkriterium

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Inhaltsverzeichnis

Tangentenkriterium

Kriterium: (Tangete am Kreis)
Eine Gerade t, die durch einen Punkt A eines Kreises k mit dem Mittelpunkt M verläuft, ist genau dann Tangente an k, wenn t senkrecht auf MA steht.
Satz 1: (Tangete am Kreis)
\ t \cap k = \lbrace A\rbrace \Rightarrow MA  \perp \ t



Beweis durch Wiederspruch:
Voraussetzung: \ t \cap k = \lbrace A\rbrace
Behauptung: MA  \perp \ t

Annahme: \ MA \not\perp \ t


1 Es existiert ein Lot von M auf t, dieses ist eindeutig. Der Lotfußpunkt auf k heiße B. Ex. und Eindeutigkeit Lot, Annahme, Voraussetzung
2 Es existiert genau ein Punkt C für den gilt, dass o. B. d. A. \operatorname(Zw) (C, B, A) und |CB| = |BA| Axiom vom Lineal, Abstandsaxiom, Definition zwischenrelation, Voraussetzung, (1) und Skizze
3 |\angle MBA | = |\angle MBC| = 90 nach Konstruktion, Def. NW, Def. supplementär, Supplementaxiom, Def. Lot (1)
4 \overline{MBA} \cong \overline{MBC}  SWS, (2), (3) und weil trivialerweise  \overline{MB} zu sich selbst kongruent ist.
5 Somit ist nach der Dreieckskongruenz und aus (4) |MC| = |MA| = r nach Voraussetzung und es ergeben sich zwei Schnittpunkte, was ein Widerspruch zur Voraussetzung ist.



--Flo60 10:53, 24. Jul. 2011 (CEST)
Beweisidee und Begründung ist richtig. Schöner wäre der Beweis sicher, wenn du mehrer kleinen Schritte aufführst, anstatt mit 6 Begründungen einen riesen Schritt durchführst.--Tutorin Anne 16:31, 24. Jul. 2011 (CEST)

Danke für den Hinweis, das Wiki streicht viele Aspekte heraus, wenn man mit "|" in der Tabelle arbeitet - ich habs geändert. --Flo60 19:14, 24. Jul. 2011 (CEST)

Satz 2: (Tangente am Kreis)
MA \perp \ t \wedge t schneidet k im Punkt A   \Rightarrow     t ist Tangente an k.



Eigentlich erscheint dieser Beweis komisch. Allerdings könnte es ja sein, dass wenn eine Gerade durch eben einen Punkt A verläuft und senkrecht auf dem Berührradius steht, dass dann trotzdem ein zweiter Schnittpunkt vorhanden ist mit k und dann wäre halt t keine Tangente mehr.

Einschub von --WikiNutzer 13:21, 26. Jul. 2011 (CEST): Wenn in der Voraussetzung steht: ::MA \perp \ t \wedge k \cap t = \lbrace A\rbrace , heißt das dann nicht schon, dass es nur einen Schnittpunkt von t und k gibt? Vermutlich ist aber genau das zu beweisen, denn dass eine Gerade, die einen Kreis in genau einem Punkt schneidet, Tangente heißt, ist doch Definition und nicht Satz. Vielleicht wäre ::MA \perp \ t \wedge  \lbrace  A\rbrace \in  k \cap t
 besser in der Voraussetzung? [Einschub von --WikiNutzer 13:21, 26. Jul. 2011 (CEST) Ende]

Da hast du aus meiner Sicht vollkommen recht. Ich habe es abgeändert (in Worten, deines wäre denke ich genauso richtig gewesen). --Flo60 21:42, 27. Jul. 2011 (CEST)

Voraussetzung: MA \perp  \ t \wedge  k \cap t = \lbrace A\rbrace
Behauptung: t ist Tangente an k
Annahme: Es ex. ein Punkt S: S \neq A \wedge \ t \cap k = \lbrace   S\rbrace

Ich versuche diesen Beweis bewusst in der absoluten Geometrie zu Beweisen. Mit der Innenwinklesumme wäre es natürlich noch einfacher, aber zwecks der Übung.

1 \left| MA \right| = \left| MS \right| Annahme, Definiton Kreis und Radius
2 |\angle MAS| = |\angle MSA| = 90 Voraussetzung, Basiswinkelsatz, (1), Def. Senkrecht
3 Demnach sind im Dreieck zwei Winkel nicht spitz, was ein Widerspruch zu einem der Korollare ist. Demnach ist die Annahme zu verwerfen. Korollar des schwachen Außenwinkelsatzes, (2), Definition Dreieck



--Flo60 10:53, 24. Jul. 2011 (CEST) Gut! Aber auch hier lieber ein paar Schritte mehr!--Tutorin Anne 16:34, 24. Jul. 2011 (CEST)



Wieso wird bei der Umkehrung eine Senkrechte auf dem Radius ausgeschlossen? Die Umkehrung lautet doch: Wenn t senkrecht auf MA, dann ist t Tangente. Und t kann doch Senkrecht auf MA stehen und den Kreis zweimal schneiden? --Verteidigungswolf 17:44, 26. Jul. 2011 (CEST) Du hast recht, die Voraussetzung ist nicht richtig. Es darf nicht angegeben werden, dass Kreis und Gerade genau einen Schnittpunkt A haben. --Tutorin Anne 18:38, 28. Jul. 2011 (CEST)