Quiz der Woche: Unterschied zwischen den Versionen
*m.g.* (Diskussion | Beiträge) |
*m.g.* (Diskussion | Beiträge) |
||
Zeile 27: | Zeile 27: | ||
</quiz> | </quiz> | ||
− | Im folgenden soll bewiesen werden, dass die so gewonnenen Teilmengen von <math>M</math> eine Klasseneinteilung von <math>M</math> sind. Ergänzen Sie dementsprechend die folgenden Ausführungen: | + | <big>'''Im folgenden soll bewiesen werden, dass die so gewonnenen Teilmengen von <math>M</math> eine Klasseneinteilung von <math>M</math> sind. Ergänzen Sie dementsprechend die folgenden Ausführungen:'''</big> |
<quiz> | <quiz> |
Version vom 16. Mai 2010, 17:39 Uhr
Es sei ein Äquivalenzrelation auf der Menge
. Wir zerlegen
derart in Teilmengen
, dass gilt: Jede der Teilmengen besteht aus all den Elementen von
, die in der Relation
zueinander stehen.
Übung zur Generierung einer Klasseneinteilung entsprechend obiger Idee.
Wir gehen von der folgenden Menge aus:
-26, 17, 75, -40, -13, 17, -55, -15, 7, -35, 95, 65, -9, 40, 3, 0,91, 70, -62, -22, 12, 26, 31,33, 50, -15, -100, -83, -61, -17
Die Relation sei wie folgt festgelegt: Zwei Zahlen aus
stehen in Relation zueinander, wenn sie bei Division durch 4 denselben Rest lassen. Da als Reste nur die Zahlen 0, 1, 2 und 3 in Frage kommen wird
in 4 verschiedene Klassen entsprechend dieser Relation eingeteilt. Die Zahlen -40, 17, -26 und 75 gehören dementsprechend jeweils in eine eigene Klasse. Orden Sie die restlichen Zahlen durch Ziehen mit der Maus den richtigen Klassen zu.
-26
-40
75
17
-9-100503312-2217-1331-15-8365703-55-61919540-15-350267-17-62
Im folgenden soll bewiesen werden, dass die so gewonnenen Teilmengen von eine Klasseneinteilung von
sind. Ergänzen Sie dementsprechend die folgenden Ausführungen: