Quiz der Woche: Unterschied zwischen den Versionen
*m.g.* (Diskussion | Beiträge) |
*m.g.* (Diskussion | Beiträge) |
||
Zeile 25: | Zeile 25: | ||
+ <math> \bigwedge_{b \in M}: T_b:= \lbrace x| x \in M \land xRb \rbrace </math> | + <math> \bigwedge_{b \in M}: T_b:= \lbrace x| x \in M \land xRb \rbrace </math> | ||
|| Genau dasselbe wie zuvor, nur heißt <math>a</math> jetzt <math>b</math> und <math>b</math> dafür <math>x</math>. | || Genau dasselbe wie zuvor, nur heißt <math>a</math> jetzt <math>b</math> und <math>b</math> dafür <math>x</math>. | ||
− | |||
− | |||
− | |||
− | |||
{ <big>'''Überlegungen zur Voraussetzung'''</big> | { <big>'''Überlegungen zur Voraussetzung'''</big> | ||
| type="{}" } | | type="{}" } |
Version vom 16. Mai 2010, 16:44 Uhr
Es sei ein Äquivalenzrelation auf der Menge . Wir zerlegen derart in Teilmengen , dass gilt: Jede der Teilmengen besteht aus all den Elementen von , die in der Relation zueinander stehen.
Übung zur Generierung einer Klasseneinteilung entsprechend obiger Idee.
Wir gehen von der folgenden Menge aus:
-26, 17, 75, -40, -13, 17, -55, -15, 7, -35, 95, 65, -9, 40, 3, 0,91, 70, -62, -22, 12, 26, 31,33, 50, -15, -100, -83, -61, -17
Die Relation sei wie folgt festgelegt: Zwei Zahlen aus stehen in Relation zueinander, wenn sie bei Division durch 4 denselben Rest lassen. Da als Reste nur die Zahlen 0, 1, 2 und 3 in Frage kommen wird in 4 verschiedene Klassen entsprechend dieser Relation eingeteilt. Die Zahlen -40, 17, -26 und 75 gehören dementsprechend jeweils in eine eigene Klasse. Orden Sie die restlichen Zahlen durch Ziehen mit der Maus den richtigen Klassen zu.
-40 | 40 | 0 | 12 | -100 | |||||
17 | 17 | -55 | -15 | -35 | 65 | 33 | -15 | -83 | |
-26 | 70 | -62 | -22 | 26 | 50 | ||||
75 | -13 | 7 | 95 | -9 | 3 | 91 | 31 | -61 | -17 |