Zentralprojektion, Parallelprojektion (2011/12): Unterschied zwischen den Versionen
Aus Geometrie-Wiki
*m.g.* (Diskussion | Beiträge) (→Definition II.04: (Parallelprojektion des Raumes auf eine Ebene)) |
*m.g.* (Diskussion | Beiträge) (→Definition II.04: (Parallelprojektion des Raumes auf eine Ebene)) |
||
Zeile 16: | Zeile 16: | ||
====Definition II.04: (Parallelprojektion des Raumes auf eine Ebene)==== | ====Definition II.04: (Parallelprojektion des Raumes auf eine Ebene)==== | ||
− | :: Es sei <math>\ \beta</math> eine Ebene des Raumes <math>\mathfrak{R}</math> und <math>\mathcal{R}</math> eine Richtung mit <math>\neg \exist g: g \subset \mathcal{R} \ | + | :: Es sei <math>\ \beta</math> eine Ebene des Raumes <math>\mathfrak{R}</math> und <math>\mathcal{R}</math> eine Richtung mit <math>\neg \exist g: g \subset \mathcal{R} \land g \subset \beta</math>. |
::Unter der Parallelprojektion des Raumes <math>\mathfrak{R}</math> auf die Bildebene <math>\ \beta</math> mit der Projektionsrichtung <math>\mathcal{R}</math> versteht man die Abbildung von <math>\mathfrak{R}</math> auf <math>\ \beta</math>, die jedem Punkt <math>\ P \in \mathfrak{R}</math> derart auf sein Bild <math>\ P'</math> abbildet, dass gilt: | ::Unter der Parallelprojektion des Raumes <math>\mathfrak{R}</math> auf die Bildebene <math>\ \beta</math> mit der Projektionsrichtung <math>\mathcal{R}</math> versteht man die Abbildung von <math>\mathfrak{R}</math> auf <math>\ \beta</math>, die jedem Punkt <math>\ P \in \mathfrak{R}</math> derart auf sein Bild <math>\ P'</math> abbildet, dass gilt: |
Version vom 16. Januar 2012, 10:47 Uhr
Zentralprojektionen
Wie kommt Lara Croft auf den Bildschirm?
Begriff der Zentralprojektion
Definition II.01: (Zentralprojektion des Raumes auf eine Ebene)
- Es sei eine Ebene des Raumes und ein Punkt aus der nicht zu gehört.
Die Zentralprojektion ist eine Abbildung von auf die Ebene mit:
- Die Ebene heißt Bildebene bei der Zentralprojektion und der Punkt Zentralpunkt der .
- Es sei eine Ebene des Raumes und ein Punkt aus der nicht zu gehört.
Definition II.02: (Zentralprojektion der Ebene auf eine Gerade)
- Versuchen Sie es selbst.
- Versuchen Sie es selbst.
Definition II.03: (Richtung)
- Eine Richtung ist eine Äquivalenzklasse nach der Relation "parallel" auf der Menge aller Geraden.
Definition II.04: (Parallelprojektion des Raumes auf eine Ebene)
- Es sei eine Ebene des Raumes und eine Richtung mit .
- Unter der Parallelprojektion des Raumes auf die Bildebene mit der Projektionsrichtung versteht man die Abbildung von auf , die jedem Punkt derart auf sein Bild abbildet, dass gilt:
- mit --*m.g.* 14:50,
Definition II.05: (Parallelprojektion der Ebene auf eine Gerade)
- Es sei eine Gerade der Ebene und eine Richtung in mit .
- Unter der Parallelprojektion der Ebene auf die Bildgerade versteht man die Abbildung, die jeden Punkt derart auf sein Bild abbildet, dass gilt:
- mit .
- In Zeichen:
Satz II.01: (Fixpunkte bei Parallelprojektionen)
- Es sei eine Parallelprojektion der Ebene auf die Gerade . Jeder Punkt der Bildgeraden ist bezüglich ein Fixpunkt.
Satz von der Mittelparallelen im Dreieck