Zentrische Streckungen (2011/12): Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Beweis von Satz II.09)
(Beweis von Satz II.09)
Zeile 19: Zeile 19:
 
::: (II) <math>\operatorname{Zw}(A,B,C) \Leftrightarrow |AB|+|BC|=|AC|</math>
 
::: (II) <math>\operatorname{Zw}(A,B,C) \Leftrightarrow |AB|+|BC|=|AC|</math>
 
::: Den Rest erledigen die Strahlensätze.
 
::: Den Rest erledigen die Strahlensätze.
 +
===Satz II.10: Korollar aus Satz II.09===
 +
:: Jede zentrische Streckung ist geradentreu.
  
 +
===Satz II.11===
 +
:: Es sei <math>g</math> eine Gerade und <math>g'</math> ihr Bild bei <math>ZS_{Z,k}</math>. Es gilt: <math>g \|| g'</math>.
 
[[Kategorie:Elementargeometrie]]
 
[[Kategorie:Elementargeometrie]]

Version vom 25. Januar 2012, 17:44 Uhr

Inhaltsverzeichnis

Zentrische Streckungen

Begriff der zentrischen Streckung

Definition II.07: (zentrische Streckung)

Es sei Z ein beliebig aber fest gewählter Punkt der Ebene \varepsilon. Ferner sei Fehler beim Parsen(Syntaxfehler): k \in \mathbb{R} \setminus\left{ 0 \right}

. Unter der zentrischen Streckung ZS_{Z,k}mit dem Streckzentrum Z und dem Streckfaktor k versteht man eine Abbildung von \varepsilon auf sich mit \forall P \in \varepsilon : ZS_{Z,k} (P) = Z + k \vec{ZP} .

Experimentieren Sie mit verschiedenen Werten von k und verschiedenen Positionen von P (Strg + f löscht die Spur):

Eigenschaften zentrischer Streckungen

Satz II.08

Eine zentrische Streckung ZS_{Z,k} ist genau dann die Identität, wenn k=1 gilt.

Beweis von Satz II.08

trivial, entsprechend der Definition II.07

Satz II.09

Es seien A,B,C drei Punkte und A',B',C' deren Bilder bei der zentrischen Streckung ZS_{Z,k}. Wenn \operatorname{koll}(A,B,C), dann \operatorname{koll}(A',B',C').

Beweis von Satz II.09

Übungsaufgabe
Hinweise:
(I) \operatorname{koll}(A,B,C) \Leftrightarrow \operatorname{Zw}(A,B,C) \vee \operatorname{Zw}(B,A,C) \vee \operatorname{Zw}(A,C,B)
(II) \operatorname{Zw}(A,B,C) \Leftrightarrow |AB|+|BC|=|AC|
Den Rest erledigen die Strahlensätze.

Satz II.10: Korollar aus Satz II.09

Jede zentrische Streckung ist geradentreu.

Satz II.11

Es sei g eine Gerade und g' ihr Bild bei ZS_{Z,k}. Es gilt: g \|| g'.