Lösung von Aufgabe 10.1P (SoSe 12): Unterschied zwischen den Versionen
Zeile 8: | Zeile 8: | ||
Ein Dreieck, das 2 kongruente Schenkel hat, die an der Basis 2 kongruente Basiswinkel entstehen lassen, heißt gleichschenkliges Dreieck. --[[Benutzer:Fahrtwind|Fahrtwind]] 18:21, 30. Jun. 2012 (CEST) | Ein Dreieck, das 2 kongruente Schenkel hat, die an der Basis 2 kongruente Basiswinkel entstehen lassen, heißt gleichschenkliges Dreieck. --[[Benutzer:Fahrtwind|Fahrtwind]] 18:21, 30. Jun. 2012 (CEST) | ||
* Was sind den Schenkel in einem allgemeinen Dreieck?--[[Benutzer:Tutorin Anne|Tutorin Anne]] 15:38, 2. Jul. 2012 (CEST) | * Was sind den Schenkel in einem allgemeinen Dreieck?--[[Benutzer:Tutorin Anne|Tutorin Anne]] 15:38, 2. Jul. 2012 (CEST) | ||
+ | |||
+ | Achso - das Wort "Schenkel" impliziert schon, dass sie gleich lang bzw kongruent sind oder? | ||
+ | Wäre es dann so richtig? | ||
+ | Ein Dreieck, das 2 Schenkel hat, die an der Basis 2 kongruente Basiswinkel entstehen lassen, heißt gleichschenkliges Dreieck. | ||
[[Kategorie:Einführung_P]] | [[Kategorie:Einführung_P]] |
Version vom 2. Juli 2012, 16:03 Uhr
Definieren Sie den Begriff "Gleichschenkliges Dreieck". Bringen Sie in der Definition die Begriffe Basis, Basiswinkel und Schenkel eines gleichschenkligen Dreiecks unter.
Ein gleichschenkliges Dreieck ist ein Dreieck mit zwei kongruenten Schenkeln und zwei kongruenten Innenwinkel (Basiswinkel). Die dritte Seite nennt man Basis.--PippiLotta 16:50, 26. Jun. 2012 (CEST)
- Achte beim (formalen) Definieren darauf, dass nur so viel Eigenschaften genannt werden, dass es sich um eine eindeutige Definition handelt - aber nicht mehr. Alle weiteren lassen sich dann als Satz formulieren. --Tutorin Anne 19:31, 28. Jun. 2012 (CEST)
Ein Dreieck, das 2 kongruente Schenkel hat, die an der Basis 2 kongruente Basiswinkel entstehen lassen, heißt gleichschenkliges Dreieck. --Fahrtwind 18:21, 30. Jun. 2012 (CEST)
- Was sind den Schenkel in einem allgemeinen Dreieck?--Tutorin Anne 15:38, 2. Jul. 2012 (CEST)
Achso - das Wort "Schenkel" impliziert schon, dass sie gleich lang bzw kongruent sind oder? Wäre es dann so richtig? Ein Dreieck, das 2 Schenkel hat, die an der Basis 2 kongruente Basiswinkel entstehen lassen, heißt gleichschenkliges Dreieck.