Lösung von Zusatzaufgabe 11.2P (SoSe 12): Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
Zeile 1: Zeile 1:
 
Was ergibt die Verkettung zweier Schubspiegelungen?<br />
 
Was ergibt die Verkettung zweier Schubspiegelungen?<br />
  
<ggb_applet width="1366" height="607"  version="4.0" ggbBase64="UEsDBBQACAgIAOgN5EAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIAOgN5EAAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7V1pd+JG1v6c+RU6fJhPcbn2JePOnLY7memkt5nu9HlPvuQIkDFpDDQIL33mx8+tRYCQhBEGLPOOk7YMKm33qbs8dW+Vzv5+dz2IbpLJtD8avmgRhFtRMuyMuv1h70Vrll6e6Nbff/zLWS8Z9ZL2JI4uR5PrOH3R4rZlv/uipbiJ8WXcOUk4NSdcS3XSZt32iVGXQlDaSRIhWlF0N+3/MBy9i6+T6TjuJB87V8l1/GbUiVN34as0Hf9wenp7e4uyS6HRpHfa67XR3bTbiuA2h9MXrfDHD3C63EG3zDWnGJPT/3v7xp/+pD+cpvGwk7Qi+wiz/o9/+e7stj/sjm6j2343vYIHZpq2oquk37tK7bPwVnRqW41BIuOkk/Zvkikcu/TRPXR6PW65ZvHQ7v/O/xUN5s/Tirr9m343mbxoYUSx0RxrgjkxUhPZikaTfjJMQ1sSrnmane3spp/c+tPav9wV4cbS0WjQju0Zo//8J6KY4uh7uyF+Q2Ejpd+F/XeY+Q31G+43wrfh/nDum3Lfhvs2nLWim/603x4kL1qX8WAKIuwPLycA3/zzNL0fJO5+wheLpyffwzNN+9+gMcPQT7zM4XuMv7f/JPzjdsdp/iHJ0lXTyazmRbNLEibl5tekj3pSll2UmpLnpKLiOeWai/oH3+hBxdI14VLuf/evcEW27jFXr+g/P+6Ckh/kEc9OM105C+oRTa9s29B90uR6ahWGmUgY2+9JJEA5pIJuLiJiYKNoBOoQERFxAR+JjqTdqogp2MEjFunItiMsctohNPziyp1MRgJOZr9VoJQRgQvxSLCIOKXiEahS5BQTlJQyaCFEJOAge3lC7SmYjLiET0xHHO7R6qQi0JDBgfAZLk8jRiJmDyYqojKS9nyEW12X2t46nJJGEkeS2BOCWoNKe3WG9jpi9mlkEFd/OJ6lORF1rrvZn+loPMcCWoNBWpg9b6ByVvG7s0HcTgbgKT5aJKPoJh5YjXAXuhwN0ygDkfrvepN4fNXvTD8maQpHTaM/45v4TZwmdz9D62l2bde2MxpOP0xG6cVoMLseTqOoMxrg+T2PBmTpbzq/a/jAlnbw5R1iaYdc+luVXncEe6LZNIHrjybTrHnc7b62LRamAST5fji4P58k8ZfxqJ9/jLNT53TOklln0O/24+Fn6Kz2KlYu0cIHWXuV+SChTHYno0n34/0UunB093syGYGRwRJRzjGjhhLwJ0K1onu/ixONCJnvwwac7rQTD5w9RNwowynTUjNCJdiC+4p9nPiLJzdzkOK7ZPG8vYlV7qUPr6fno8HiKyeCi3icziYuggD7OLHP9XLYGySumziLC+6586U9uvsYDLY/16f7MXzC/g7aPSf6CMwDtRFEL2zbfuva2Fubt8KuDXYtcNbh+t35fmKoa+G2bb91raAH+1sLj0qyxyQ4u0x/6owabgXVyQyW7f/W2c+G/fRN9iHtd76ERyX+gHez63Yy70X5c5JdnfPsdKWbnX1JJsNkEHo1gDkbzaZeSZc6fDfp9K/ho98RRBJbuH6DG/DfdpPeJMlufOCiMy8wtxcv99fC1+5UP09G16+HN5+gL6zcwNlpdpdn086kP7Z9LmqDJ/iSLHpVtz+NwZF0l4+zagiP3rEOA8STWtGAgs7Sq9HExV9gV2BrtW+QXEO0FaWue7keOhfzSxfGWXlGo/afYNpWcVggBvtL+5rrlfFgfBXbWC889SC+TyY5ObjzvR11V6UDwnePAHo+9uCOk8T3C3/D8McYTufUKWeoQNzT6O5F64QgzhTcxD1EsMgQohX4R/dDGHz9zcf1Pq61T2+1Lmes/bcr0EF/8oJ7QITnxyFCQYMIGcIQpc9F6GLhPYvw4ghEKEGCTn4EqZ0IrDO6vo6H3WjoQsYPo8F9bzRsLYKYGFv1jWJiu2AUUytGL6JZmu0HQzgAT0N8s45vFsMGooS2v2C4TAlC/oIZBPNT5V1GCgHNF6BtU+fX0uDB3B//7He7iQtmTwvwhhDbn3pJnsvwEsEcwIIEn7bAl9TBt7oXTpOe/TS/kU6xHz7yRmt2xEV34kiTuQrCj3F96wTOaHDuR7vOppBkTEIA448hYtW1b45T8nXoD5l6f9u/Hg/6nX4671wDqwWvhyl438S5n6JT/ZIkYxvNvB9+msTDqR008W2WnPWGmMTNwYQgVrCMAIpGmCvvZ04oRUprNm9D1dEA0W4OECdAA/Ju3msHeH8RkBAcYWrIvIl5tjjkXeWrI3CVEK/J4CqD+dpncPHTMUgMXN5cZHIP4cUb0IuV2OKVDxp+KgQV3fWBg1WxuWy7zTEacCjNu06ig/32AduJQZyKAinejaGoFv3b/mQympQHdt2C8F/+NR6Ppn97KHbLcbxwyNOqQZ6vSa01JlQrrZTRHocTgRTTXBNMqTSUi3109FJpn1dJ+7y+tM+bJ23BpOIEwkMBXZ5zkYWShjLwooQyBhI3hhxK3BdV4r6oL+6LhokbaCBR2Aj4j1GDhfTSxohbECjDmjDDFeP76NwVJDGIyFPF+Qeak3cpbVw+sLN8YDz/YInkZqiV08kl+I6VVFb10EPebs4iOG7JJNXGMANcUc25pVRagj3ginDMRXCLCsw1lQSsNWMGbMaePORTcMvGQQMUUxgtgVoSzolSVGYUUzCglYwCCBgw8xwHMc61NpwSypVkz5fjFLhm04CRCKgkBU8JBpwRs+CbWhglsdaESC3CIACTSAkJXoBBfMPhv2eLS97X/nwMTIoixTN7J/fhhD+DYIohz7Ir/bngcGfrneeNP2Um5llzSJVEFEJHDN4C2w7Pg2iJzSHkwh0n6MWFtlCFpfxaUIZOPEmTaT8ehlgghc8fLFhRcjdeiSar0HIqMYjTVfabC5pmVTRsazLWsKiVg8HimDKbPAP7llEEiTTLW72da0uV/M/Xy/98W/mfN1T+EgIviLKUItJgE0b7KcIkFw3sJpu5GQIX6xG42BaBi0YikPcLwuR+Dk3VSghbCW3biLyVULgSIldC5x5P6v7fULumBaubEjxJvD2hFHGqBWZSMTDz9IiShw0FqBbNA3gkBxS5oEYyaTNcx4JPu5n41GJ7miHDoaGx+AjxfEl43k3/4xjInkDMmjNfGYbFUvKe0D049feT9GoEDjEelOTT/lE16p2sd7K5fFqynZJkFaR4hzl4lza7r8qrWdkyhpRi4G+4D6P2NA5SN7VWDIySAia5Ro9keQ2LdKlARkpjKLANAuZNzrmeZkZrpQSjoCj70I/y5NsmeJw/Do+ywxuDh7SWaYGHEHPyJ/UCEEn4wfJzmyBy8ThEyg5vCiIE4jBseAERIIaKEsICIkIdPIf3AD2sJIk1qGIlYaykjZXkcVcU8tBEstpbHoJHPiYY3tGdF8nkknPPnL5eHiGRYWwQnIsU2A5kCfglhXy20fBaKtk0jFYrU1kYQFwqTSUGKa6JYgaDAdNAI48GmjKj0xRoVitVeTZNRaglpfLac0KwnUXAmTScYMwFtH6uGOW9/T+PgExSO1UwkElb5U2W9W0fsVlpIrHc3xMr4lXvfrPe864kFW+awywpEpIXwi/wQwJrmUVf8ilSipU0ZMv0YhHGmwKMr+uE1a8bE0RbdcE0b+MCrWHzeSrws4/JUg8kFTeR+i91pP5Lo6ReaaQOnzzcRNK/1pH0r42RNBEoK6XliKglOe+lS5fTwtdeqL94VvZrFcGjvtkX36zvqdqfWxEzesQ07EtjosZ6pItQpKXEma4fUf6u3xxECpP/CgxLCEQxo5lrI+RoYPizMTDUo1PUIGKA9AZI2DMCJG/9PwZAVoJIb9ZfF8z+5XrTvgrvZWNCf4MMX8KR+hn1FKwhX04wZfhqiigTOJtuy56T4dsE4PMqaterB3CvMQBjxHLT2rH2tIAKhGmYbqAQIC/nKn5kmIbJT8VY7aoepleNwRQoHV+Nf10xiwn1ihgZrc3Cc4rna4htXv+8Py0bmbksIDpYj2gusT/YDk68ezBLjO19qWW2pUmcIaEYJUJ6H3vw2bNrAOkVALmuAch1YwDxpvG+wnhaFBRDGhDgNj5tNADDGgAM/wfA7gEY1wBg/D8AKgBYN0L15ghSHcCcXE2KIJTYXzSIXyJDpGHCKCGxUWofWY+Syrk3VZVzX2v05q+P7807Gjl8eCEKAd6WSYqZkYwTCK4O0KXvxhM4n+03QSCfkrsUeorLe/z162yU/o34jTs0L+kU2rbyBz6l7VhK27jujJFgii8GzpgfNhD5wYT8WjQPC4fmhEM3Fw5tknBANsuxO1Yqm8KnsV7K0whRTzosJx22uXRYk6QjIbxdSmKF8SZgPErkkli8nnB4Tjj85ebS4U2Rjrv/10uN319eTpPUJaE8pWebyULkZCFqyEI0RRbuoQF8oXDwmMTosFwTw0oLbN2l85mVNma7yuWvBZ9Ykln+g6z3kw/WLv9RYs6fbKakJgr0jRJuOBilkOoEKwahidBg5Al4zN2sKrZd8XIRkpK0cz1Iyk/QHEgULUJCBFJKLiA5XEF5SflyEZOSBHU9TMpP0BRM7HRWxcUCFO/VCUdMgRFiARR5wKVqS+VVVcPsdpVXMf9BCmBWFw1nlyipsM0uUVLY6XaVVzM/3Ek2rWf+44BL6Vb3sMNVNJdpxwHvfd3iuno+PzaXXzdahlVdwY1zDGQMa4gBpX25wPMZwK5d1twgoFaT7mJpwd3cCLVLBzKGhBTKEAxuh8kjWgS53BA1BaX1y/EuJQ1CITqzhWlEC2aEFpQ9p2zQuojg7TGM/AlksJ0dAOi4X4HGAGSMKu3HoyRT+6gl3LTeOfPpbwtxwO1637xS8XzblPFtghHIFcI0LLUwBptFqSy376XREsI1gU1YgOfJS56zGGgHRc8ZlrcFLN/VCcbfPaR6hxvdBQ0ChlrUII0EVwsN0k+wmNJmgn9fR/DvG8N4ntJy1aiCrpb7hzpy/9AYuVNEWCZc+yu8FAEIKGPCZN8yuY8hmXKm+c5L+L2ndx+q2CLzzcYZDxxmrG+0FcNjR8zmxg0KNksroyupGzVIasqoIHZenXnGr4FYxWTYIEzq0TRMEZUUK86ltJbheOYIjxqDSIGSibWUjBDEBScaC8kxtcOCzwiS0qySzGfYzjfPKskmZZUEEpQoMGGG2l/C5x8JoIuV9CaN8vkU703TjyqfcqshHNUk4ZxwZEe2mU0IuV80G+TWWGGqgnRopXDWBFj/OgIyT+yaVzqr1hGShcwMfC2lZMR9SfCOFpZZJ81/H4E0OUFScOP6lP1l5usmSWo4DV2Q7yPNVVIT9S8fvf67EN1O1kevuZqoyWO0OXsb7U7GQChDBszbXJdDvopyJJbJhQgxhKZ2MT4iIYRghCi+pxDi8fn5SQGfskEQWof6lZ+gKXSQYyQJMD9i3ZYKUwGYLXljVINNVsKwAy5lVZKfL0JSNjxSC5LyEzQFEiaQsu+4JoqCsSc6vHwNqJER2r5tSWvBBTnY25ZK8vNFTMqGTmphUn6CxmDC7SLTGnCh3GgaJpJTgrTC0q3EyxV3RURPmJ6n1el5Wp2ep1UDLmU5cFqdnqfV6XlanZ5/sI9snJ4/4Ez3aod6wPT8o6pSH33vKwXS1rMbow3mGoipCAl6N/bD7dJ8trBIixBrQWRmIMTlENQSJjB9vgnFTbLzzcFJI7sUsjAG/IrCRpKscpgwjSUxRkKUzAwNVe1wbcThx3DMDUTK7HgGfsotUVNwOtGICCrtK/7A/0MgIEP5uxFuJXg7tgA+KARlgiK7dLxySy1RTo7l7UUfj4GDMgikhSDZeJDOhoMUY5RnE3bEPjjoutcalbn0j4Uw4Nt617ySnf/WGG6qQR+EZFpIpTAWGfEXYOYUx8BLJRVchhc6PskrjsoioF0k5wOU3wpQfqoTiX9qTNTNNTJKQ1ihtGCK0PDaBTvlWQut7CLLjGmzl1xlndx8pdx/qyP335ojd46IZEJbqgliZ0rM5U4Jx3a1cfuuVPLUuflKuX+uI/fPzZH707mLcpb5yQv4N0/tPlcxRR7WistS86nne7Mti6/5ETO5m8elgZ+Ut0FHlMq9BpwJZTM2zzbSXEUlbQwmNTkao9qyAo0xBViAMxwNJLMGKUotQkYFgCUADy2pgtbPql56kwrfqmreaS2+MG3M/H4wd6BArFCJaKt8lyvizAaEQey6mncLgMIyc+8KAN0+5I9XC653X7K0b5DUE2D0chsi7jEqFjt+q4nRtyZjJJqjSBfrQZqb0BWcBh6n6wJOr2pNPn31EEjlFGMPi79RyaWdaqqJX/g0JO4V1oCdzeRztzpjWKaHY2SX35jXCdJSxiE2ZBzlxU06X/l1sXlxk25ScROTyBYvzZfg8ZVfVCHNJc4oHRM11ywx+cqvGsIxTRIOF0jouQHgYcEJirhdvySr++KVVXGb6Wrb62pc0NXf66jq71tpqn27Qc9v2n6zixe/McQloYb4CtDwsnYJHU1LkS3KH16MyDTSivP5Iidqh2MDVQKfZZMj0oLIX9Zcw2Lbqfj7kDuRiiJhwPhSLbmg3kJKgRE3liMDAeDZu8RWxE6yHNlO5F6+IOnvXuYvS+bVxw9JvZCv3D3J2j56IMK+amIxzkU99wXDKvDSoFh4kQiz7EsxnZX3PadX72ymXnGotSjAfF5zNZImKZddK82OZBimmA01CAnTjzB8DTrHqYIdPLzp+imsWroYzFwV/EXNJUeaJHiiiESacSzta3U5Nt6sgTohQzRW3GhBmCJPZdbOM2dyUSL4dl3D1m6SYaMEKcoFIz5vwpWfcgdBkTQEz7MsYfEKCMERRIpKS4U5pnt7De8TWrZ2lWV7VU/BXjVJwU6EQBqCA/siUjuTJ3gvrJCQoGWgYdKOqD99tFZm2X6qJ/ifmiR4AioFkQMG40Ww0GFWiZEKcQgNsCGcYm2eLF57lcn9pxK5d+oatk6TDBt4FAOuBJOQiPeSt4EykXyetfcu5YRThiiEa4YquzIPBHPP1q6tWcI5LgG5+xDIuUke3SYhXBZ831fE6pa7Y06RNppobTi1u/eD8VbQtEugSWpBkzQJmpLw4b4i2HBv+lUK2YE8LTEcJNie+NJWyHRKkLmshcxlk5ApMYD35dbSVUMriZShWCoJhMjogwNTFTB0M8eVlMDzqtbkjlcPFdeuK7GpD85iadsTb682nuUhONg7+4IMuwKmMEGnCKYUATqUagCIqOz1sVgioE727RpESEkFKQ0mNh0eB1kOpyAI56/s514y6iXtSfzjfwFQSwcIBEvg2EcVAAD2tgAAUEsBAhQAFAAICAgA6A3kQNY3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgICADoDeRABEvg2EcVAAD2tgAADAAAAAAAAAAAAAAAAABdAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAAN4VAAAAAA==" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
+
<ggb_applet width="1366" height="607"  version="4.0" ggbBase64="UEsDBBQACAgIADwQ5EAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIADwQ5EAAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7V1Zc9tGtn7O/AoUH+YpavW+ZORMWXIy48TbjB3XrbykQBKiGFMETYJaXPPj5/QCkiAAipBECuIdJRZEorGdr8/y9TndOPn7zeUoukqms2E6ftEhCHeiZNxL+8Px4EVnnp0f6c7ff/zLySBJB0l3Gkfn6fQyzl50uG057L/oKG5ifB73jhJOzRHXUh11Wb97ZNS5EJT2kkSIThTdzIY/jNN38WUym8S95GPvIrmM36S9OHMXvsiyyQ/Hx9fX1yi/FEqng+PBoItuZv1OBLc5nr3ohD9+gNMVDrpmrjnFmBz/39s3/vRHw/Esi8e9pBPZR5gPf/zLdyfXw3E/vY6uh/3sAh6YadqJLpLh4CKzz8I70bFtNQGJTJJeNrxKZnDsykf30NnlpOOaxWO7/zv/VzRaPE8n6g+vhv1k+qKDEcVGc6wJ5sRITWQnSqfDZJyFtiRc8zg/28nVMLn2p7V/uSvCjWVpOurG9ozRf/4TUUxx9L3dEL+hsJHS78L+O8z8hvoN9xvh23B/OPdNuW/DfRvOOtHVcDbsjpIXnfN4NAMRDsfnU4Bv8XmW3Y4Sdz/hi+XTk+/hmWbDb9CYYegnXubwPcbf238S/nG747j4kGTlqtl03vCi+SUJk3L7a9IHPSnLL0pNxXNSUfOccsNF/YNv9aBi5ZpwKfe/+1e6Itv0mOtX9J8fdkHJ9/KIJ8e5rpwE9YhmF7Zt6D5ZcjmzCsNMJIzt9yQSoBxSQTcXETGwUTQCdYiIiLiAj0RH0m5VxBTs4BGLdGTbERY57RAafnHlTiYjASez3ypQyojAhXgkWEScUvEIVClyiglKShm0ECIScJC9PKH2FExGXMInpiMO92h1UhFoyOBA+AyXpxEjEbMHExVRGUl7PsKtrkttbx1OSSOJI0nsCUGtQaW9OkN7HTH7NDKIaziezLOCiHqX/fzPLJ0ssIDWYJCWZs8bqIJV/O5kFHeTEXiKjxbJKLqKR1Yj3IXO03EW5SBS/91gGk8uhr3ZxyTL4KhZ9Gd8Fb+Js+TmZ2g9y6/t2vbS8ezDNM3O0tH8cjyLol46wot7Tkdk5W+6uGv4wFZ28NUdYmWHXPlbVV43hT3RfJbA9dPpLG8e9/uvbYulaQBJvh+Pbk+nSfxlkg6Lj3Fy7JzOSTLvjYb9YTz+DJ3VXsXKJVr6IGuvch8klMnvJJ32P97OoAtHN78n0xSMDJaIco4ZNZSAPxGqE936XZxoRMhiHzbgdGe9eOTsIeJGGU6ZlpoRKsEW3Nbs48RfPLlagBTfJMvnHUytcq98eD07TUfLr5wIzuJJNp+6CALs49Q+18vxYJS4buIsLrjn3pduevMxGGx/rk+3E/iE/R10B070EZgHaiOIQdh2/da1sbe2aIVdG+xa4LzDDfuL/cRQ18Jtu37rWkEP9rcWHpXkj0lwfpnhzBk13Amqkxss2/+ts5+Ph9mb/EM27H0Jj0r8Ae/ml91k0YuK5ySPdc6T47VudvIlmY6TUejVAOY8nc+8kq50+H7SG17CR78jiCS2cP0GN+C/7SeDaZLf+MhFZ15gbi9e7a+lr92pfp6ml6/HV5+gL6zdwMlxfpcns950OLF9LuqCJ/iSLHtVfziLwZH0V4+zagiP3rMOA8STWdGAgs6zi3Tq4i+wK7C12jdKLiHaijLXvVwPXYj5pQvjrDyjtPsnmLZ1HJaIwf7KvuZ6ZTyaXMQ21gtPPYpvk2lBDu58b9P+unRA+O4RQM8nHtxJkvh+4W8Y/pjA6Zw6FQwViHsW3bzoHBHEmYKbuIUIFhlCtAL/6H4Ig6+/+bjex7X26a3WFYy1/3YNOuhPXnB3iPD0MEQoaBAhQxii9IUIXSy8YxGeHYAIJUjQyY8g9SgC66WXl/G4H41dyPghHd0O0nFnGcTE2KpvFBPbBaOYWjF6Ec2zfD8YwhF4GuKb9XyzGDYQJXT9BcNlKhDyF8whWJyq6DIyCGi+AG2bOb+WBQ/m/vjnsN9PXDB7XII3hNj+1CvyXIWXCOYAFiT4tCW+pAm+9b1wlgzsp8WN9Mr98IE32rAjLrsTR5osVBB+jOtbR3BGgws/2nU2hSRjEgIYfwwR6659e5ySr2N/yMz72+HlZDTsDbNF5xpZLXg9zsD7Js79lJ3qlySZ2Gjm/fjTNB7P7KCJb7PirLfEJG4PJgSxkmUEUDTCXHk/c0QpUlqzRRuqDgaIbnuAOAIaUHTzXjvA+4uAhOAIU0MWTcyzxaHoKl8dgKuEeE0GVxnM1y6Di58OQWLg8hYikzsIL96AXqzFFq980PBTKajobw4crIotZNtvj9GAQ2nRdRId7LcP2I4M4lSUSPHjGIp60b8dTqfptDqw65eE//Kv8SSd/e2u2K3A8cIhT6sGRb4mtdaYUK20UkZ7HI4EUkxzTTCl0lAudtHRK6V9Wift0+bSPm2ftAWTihMIDwV0ec5FHkoaysCLEsoYSNwYsi9xn9WJ+6y5uM9aJm6ggURhI+A/Rg0W0ksbI25BoAxrwgxXjO+ic9eQxCAiTxUXH2hB3pW0cfXA3uqB8eKDJZLboVZNJ1fgO1RSWddD93m7BYvguCWTVBvDDHBFteCWUmkJ9oArwjEXwS0qMNdUErDWjBmwGTvykE/BLVsHDVBMYbQEakk4J0pRmVNMwYBWMgogYMDMcxzEONfacEooV5I9X45T4pptA0YioJIUPCUYcEbMkm9qYZTEWhMitQiDAEwiJSR4AQbxDYf/ni0uRV/78yEwKYoUz+2d3IUT/gyCKYc8q67055LDnW92nlf+lLmY5+0hVRJRCB0xeAtsOzwPoiU2h1AId5yglxe6hyqs5NeCMvTiaZbMhvE4xAIZfP5gwYqSm8laNFmHllOJUZyts99C0DSvo2H3JmMti1o5GCyOKbPJM7BvOUWQSLOi1Xt0bamT/+lm+Z/eV/6nLZW/hMALoiyliDTYhNF+ijApRAOPk83cDoGzzQic3ReBs1YiUPQLwhR+9k3VKghbBW3birxVULgKIldB5x5O6v7fULu2BavbEjxJvD2hFHGqBWZSMTDz9ICShy0FqBHNA3gkBxS5oEYyaTNch4JPt534NGJ7miHDoaGx+AjxfEl40U3/4xDInkDMmjNfGYbFSvKe0B049ffT7CIFhxiPKvJp/6gb9U42O9lCPi25n5LkFaT4EXPwLm12W5dXs7JlDCnFwN9wH0btaBykaWqtHBglJUwKjR7I8loW6VKBjJTGUGAbBMybXHA9zYzWSglGQVF2oR/Vybdt8Dh9GB5Vh7cGD2kt0xIPIRbkT+olIJLwveXntkHk7GGIVB3eFkQIxGHY8BIiQAwVJYQFRITaew7vDnpYSxIbUMVawlhLG2vJ42NRyH0TyXpvuQ8e+ZBg+JHuvEwmV5x77vT16giJDGOD4FykwHYgS8AvKeSzjYY3Usm2YbRemcrCAOJKaSoxSHFNFDMYDJgGGnkw0FQZnbZAs16pyvNpKkKtKJXXniOC7SwCzqThBGMuoPVzxajo7f95AGSS2qmCgUzaKm+yqm+7iM0qE4nV/p5YEa9796vNnnctqXjVHmZJkZC8FH6BHxJYyzz6kk+RUqylIfdML5ZhvCrB+LpJWP26NUG0VRdMizYu0Bq2mKcCP7uYLHVHUnEbqf/SROq/tErqtUZq/8nDbST9axNJ/9oaSROB8lJajohakfNOunQ1LXzthfqLZ2W/1hE86pt98c2Gnqr9eS9iRg+Yhn1pTdTYjHQRirSUONf1A8rfDduDSGnyX4lhCYEoZjR3bYQcDAx/tgaGZnSKGkQMkN4ACXtGgBSt/8cAyFoQ6c3665LZP99s2tfhPW9N6G+Q4Ss4Uj+jnoI15KsJphxfTRFlAufTbdlzMnzbAHxaR+0GzQAetAZgjFhhWjvWnhZQgTAN0w0UAuTlQsUPDNMw+akcq100w/SiNZgCpePr8a8rZjGhXhEjo7VZek7xfA2xzeufDmdVIzPnJURHmxEtJPZHLYKzwtzeVtpmW5zEGRKKUSKk97J7nz+7AZJBCZLLBpBctggSbx5vawyoxUExpAEDbmPUVkMwbgDB+H8Q7AKCSQMIJv+DoBaCTSNVbw4g5QEMytWmCEKJ/UWD+CUyRBomjBISG6V2kf2oqKB7U1dB97VBf/56v/68gxHEuxekEOBzmaSYGck4gSBrD136ZjKF89l+EwTyKbnJoKe4/Mdfv87T7G/Eb9yhRUln0LZTPPDB0n6A7VhJ37jujJFgii8H0JgfPhDFQYXimjR3C4cWhEO3Fw5tk3BANqsxPFYqn8qnsV7J1wjRTDqsIB22vXRYm6QjIchdSWaFcSdgPkoUklm8mXB4QTj85fbS4W2Rjrv/1yuN35+fz5LMJaM8tWfbyUIUZCEayEK0RRbuoQF8oXDwmMTosGwTw0oLbN2l85m1NuZ+FcxfSz6xIsP8B9nsJ++sYf6jwpw/2YxJTRToGyXccDBKIeUJVgxCE6HByBPwmI+zutj9ipjLkFSkn5tBUn2C9kCiaBkSIpBScgnJ/grLK8qYy5hUJKqbYVJ9grZgYqe1Ki6WoHivTjhiCowQC6DIPS5ZWymvulpmt6u6mvkPUgKzvng4v0RFpW1+iYoCT7eruqr57k6ybV3zH3tcUre+h+2vsrlKO/Z475sW2dWLebKFPLvRMqzuCm6cYyBjWEMMKO1LBp7PQHbj8uYWAbWefBcrC+8WxqldWpAxJKRQhmBwO0we0GLI1YaoLShtXpZ3JXUQCtKZLVAjWjAjtKDsOWWFNkUEbw9h5E8gg+0sAUDH/Qo0BiBjVGk/HiWZ2kVN4bZ1z7lPf1uKA643++a1yufrJ6WPq6OtGIFcIUzDUgtjsFmWzHL7fhotIVwT2ISFeJ689DmPgR6h+DnH8rqE5bsmwfi7u1Rvf6O7oEHAUMsapJHgaqlB+gkWVdpO8O+bCP59axjPU1quBtXQ9XL/0ETuH1ojd4oIy4Vrf4WXIwABZUyY/FsmdzEkU80033kJv/f07kMdW2S+2STngeOc9aX3YnjsgNncpEXBZmWFdC11owZJTRkVxM6vM8/4dRDrmIxbhEkzmoYpopJixbmU1jIczlzhtDWIlCiZ2EjJCEFccKKxkBxTOyz4jCCpzCrJYobtdPuskmxTVkkgQYkCE2ao/SV8/pEAulhJb9IoX0z13jb9qIoptwbCUW0SzhFHdmSb2YSQ+0XzQW6NFaYqSIfWCmdDgPWvAyDzxK59pfNqHSFZyMzA11JKRtyXBD/SAjObpPnvA5AmJ0gKblyfsr/MYv0kSQ2noQvyXaS5Kmqi/uWj13+Xotvp5ui1UBM1fYg252+lfZQxEMqQAfO20OWQr6IciVVyIUIMoaldlI9ICCEYIYrvKIR4eH5+WsKnahCENqF+1SdoCx3kGEkCzI9Yt6XClABmS94Y1WCTlTBsj0taVeTny5BUDY80gqT6BG2BhAmk7LuuiaJg7IkOL2EDamSEtm9d0lpwQfb21qWK/HwZk6qhk0aYVJ+gNZhwu9i0BlwoN5qGCeWUIK2wdCvycsVdEdETpudpfXqe1qfnad2AS1UOnNan52l9ep7Wp+fv7CNbp+f3OOO93qHuMT3/oKrUB9/7WoG09ezGaIO5BmIqQoLejf1wu0SfLSzSIsRaEJkZCHE5BLWECUyfb0Jxm+x8e3DSyC6JLIwBv6KwkSSvHCZMY0mMkRAlM0NDVTtcG3H4MRxzA5EyO5yBn2pL1BacjjQigkr7qj/w/xAIyFD+boRbEd6OLYAPCkGZoMguIa/ckkuUk0N5i9HHQ+CgDAJpIUg+HqTz4SDFGOX5hB2xCw666fVGVS79YykM+LbZNa9l57+1hptq0AchmRZSKYxFTvwFmDnFMfBSSQWX4cWOT/Kqo6oI6DGS8wHKbyUoPzWJxD+1JurmGhmlIaxQWjBFaHj9gp34rIVWdrFlxrTZSa6ySW6+Vu6/NZH7b+2RO0dEMqEt1QSxMyUWcqeEY7vquH1nKnnq3Hyt3D83kfvn9sj96dxFNcv85AX8m6d2n+uYIg9rxuWp+czzvfk9i6/5ATO5q4elgZ+Ut0FHlMq9DpwJZTM2zzbSXEclaw0mDTkao9qyAo0xBViAMxwMJPMWKUojQkYFgCUADy2pgtbPql56mwrfumreWSO+MGvN/H4wd6BArFSJaKt8VyvizBaEQTx2Ne89AArLzb0rAXR9lz9eL7h+/JKlXYOkngCjl/ch4h6jcrHjt4YYfWszRqI9inS2GaSFCV3DaeRxuizh9KrR5NNXd4FUTTF2sDgPlVzaqaaa+AVQQ+JeYQ3Y2Uw+d6s0hmV6OEZ2+Y1FnSCtZBxiS8ZRXdyki5VfZ9sXN+k2FTcxiWzx0mIJHl/5RRXSXOKc0jHRcM0SU6z8aiAc0ybhcIGEXhgAHhacoIjb9Uvyui9eWxW3na52va7GJV39vYmq/n4vTbVvORj4TddvHuMFcAxxSaghvgI0vLRdQkfTUuSL84cXJDKNtOJ8sciJesSxgTqBz/PJEVlJ5C8brmFx36n4u5A7kYoiYcD4Ui25oN5CSoERN5YjAwHg+TvF1sRO8hzZo8i9emHS373MX1bMq4/vknopX/n4JOv+0QMR9pUTy3Eu6rkvGFaBVwbFwgtFmGVfium8vO85vYJnO/WKQ61FCebThquRtEm57FppdiTDMMVsqEFImH6E4WvQOU4V7ODhjddPYdWy5WDmuuDPGi450ibBE0Uk0oxjaV+vy7HxZg3UCRmiseJGC8IUeSqzdpo7k7MKwXebGrZumwwbJUhRLhjxeROu/JQ7CIqkIXiRZQmLV0AIjiBSVFoqzDHd2et4n9Cydess26tmCvaqTQp2JATSEBzYF5LamTzBe2GFhAQtAw2TdkT96aO1Ksv2UzPB/9QmwRNQKYgcMBgvgoUOs0qMVIhDaIAN4RRr82Tx2qtc7j9VyL3X1LD12mTYwKMYcCWYhES8l7wNlInki6y9dylHnDJEIVwzVNmVeSCYe7Z2bcMiznEFyP27QC5M8ui3CeGq4Pu2Jla33B1zirTRRGvDqd29G4zvBU23ApqkETRJm6CpCB9ua4IN98ZfpZAdyNMSw0GC7Ygv3QuZXgUy542QOW8TMhUG8LbaWrpqaCWRMhRLJYEQGb13YOoChn7uuJIKeF41mtzx6q7i2k0lNs3BWS5te+Tt1dazPAQHe2dfk2FXwBQm6BTBlCJAh1INABGVv0YWSwTUyb5jgwgpqSCVwcS2w+Mgy/EMBOH8lf08SNJB0p3GP/4XUEsHCAmyn5RIFQAA/rYAAFBLAQIUABQACAgIADwQ5EDWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAICAgAPBDkQAmyn5RIFQAA/rYAAAwAAAAAAAAAAAAAAAAAXQAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAADfFQAAAAA=" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
 
<u>braun</u> (bild 1, 2, 3):<br />
 
<u>braun</u> (bild 1, 2, 3):<br />
 
erste schubspiegelung<br />
 
erste schubspiegelung<br />

Version vom 4. Juli 2012, 01:02 Uhr

Was ergibt die Verkettung zweier Schubspiegelungen?

braun (bild 1, 2, 3):
erste schubspiegelung
rot (bild 4a und 5a):
zweite schubspiegelung, fall 1: wenn die zweite spiegelgerade im rechten winkel zur ersten spiegelgerade steht, kann das bild auch durch eine drehung durch d1 erfolgen.
blau (bild 4b und 5b):
zweite schubspiegelung, fall 2: wenn die beiden spiegelachsen parallel (oder identisch) zueinander sind, kann das bild auch durch verschiebung dargestellt werden.
grün (bild 4cund 5c):
zweite schubspiegelung, fall 3:zwei spiegelgeraden weder senkrecht noch parallel: drehung durch d2

--Studentin 02:00, 4. Jul. 2012 (CEST)