Lösung von Zusatzaufgabe 11.2P (SoSe 12): Unterschied zwischen den Versionen
Zeile 2: | Zeile 2: | ||
gerade sehe ich, dass die verschiebung bei einer schubspiegelung immer parallel zur spielgelgeraden verläuft, die vektoren im bild sind daher alle falsch :-(<br />--[[Benutzer:Studentin|Studentin]] 02:06, 4. Jul. 2012 (CEST)<br /> | gerade sehe ich, dass die verschiebung bei einer schubspiegelung immer parallel zur spielgelgeraden verläuft, die vektoren im bild sind daher alle falsch :-(<br />--[[Benutzer:Studentin|Studentin]] 02:06, 4. Jul. 2012 (CEST)<br /> | ||
die schlussfolgerungen sollten sich jedoch nicht ändern...--[[Benutzer:Studentin|Studentin]] 02:07, 4. Jul. 2012 (CEST) | die schlussfolgerungen sollten sich jedoch nicht ändern...--[[Benutzer:Studentin|Studentin]] 02:07, 4. Jul. 2012 (CEST) | ||
− | <ggb_applet width="1366" height="607" version="4.0" ggbBase64="UEsDBBQACAgIADwQ5EAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIADwQ5EAAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7V1Zc9tGtn7O/AoUH+YpavW+ZORMWXIy48TbjB3XrbykQBKiGFMETYJaXPPj5/QCkiAAipBECuIdJRZEorGdr8/y9TndOPn7zeUoukqms2E6ftEhCHeiZNxL+8Px4EVnnp0f6c7ff/zLySBJB0l3Gkfn6fQyzl50uG057L/oKG5ifB73jhJOzRHXUh11Wb97ZNS5EJT2kkSIThTdzIY/jNN38WUym8S95GPvIrmM36S9OHMXvsiyyQ/Hx9fX1yi/FEqng+PBoItuZv1OBLc5nr3ohD9+gNMVDrpmrjnFmBz/39s3/vRHw/Esi8e9pBPZR5gPf/zLdyfXw3E/vY6uh/3sAh6YadqJLpLh4CKzz8I70bFtNQGJTJJeNrxKZnDsykf30NnlpOOaxWO7/zv/VzRaPE8n6g+vhv1k+qKDEcVGc6wJ5sRITWQnSqfDZJyFtiRc8zg/28nVMLn2p7V/uSvCjWVpOurG9ozRf/4TUUxx9L3dEL+hsJHS78L+O8z8hvoN9xvh23B/OPdNuW/DfRvOOtHVcDbsjpIXnfN4NAMRDsfnU4Bv8XmW3Y4Sdz/hi+XTk+/hmWbDb9CYYegnXubwPcbf238S/nG747j4kGTlqtl03vCi+SUJk3L7a9IHPSnLL0pNxXNSUfOccsNF/YNv9aBi5ZpwKfe/+1e6Itv0mOtX9J8fdkHJ9/KIJ8e5rpwE9YhmF7Zt6D5ZcjmzCsNMJIzt9yQSoBxSQTcXETGwUTQCdYiIiLiAj0RH0m5VxBTs4BGLdGTbERY57RAafnHlTiYjASez3ypQyojAhXgkWEScUvEIVClyiglKShm0ECIScJC9PKH2FExGXMInpiMO92h1UhFoyOBA+AyXpxEjEbMHExVRGUl7PsKtrkttbx1OSSOJI0nsCUGtQaW9OkN7HTH7NDKIaziezLOCiHqX/fzPLJ0ssIDWYJCWZs8bqIJV/O5kFHeTEXiKjxbJKLqKR1Yj3IXO03EW5SBS/91gGk8uhr3ZxyTL4KhZ9Gd8Fb+Js+TmZ2g9y6/t2vbS8ezDNM3O0tH8cjyLol46wot7Tkdk5W+6uGv4wFZ28NUdYmWHXPlbVV43hT3RfJbA9dPpLG8e9/uvbYulaQBJvh+Pbk+nSfxlkg6Lj3Fy7JzOSTLvjYb9YTz+DJ3VXsXKJVr6IGuvch8klMnvJJ32P97OoAtHN78n0xSMDJaIco4ZNZSAPxGqE936XZxoRMhiHzbgdGe9eOTsIeJGGU6ZlpoRKsEW3Nbs48RfPLlagBTfJMvnHUytcq98eD07TUfLr5wIzuJJNp+6CALs49Q+18vxYJS4buIsLrjn3pduevMxGGx/rk+3E/iE/R10B070EZgHaiOIQdh2/da1sbe2aIVdG+xa4LzDDfuL/cRQ18Jtu37rWkEP9rcWHpXkj0lwfpnhzBk13Amqkxss2/+ts5+Ph9mb/EM27H0Jj0r8Ae/ml91k0YuK5ySPdc6T47VudvIlmY6TUejVAOY8nc+8kq50+H7SG17CR78jiCS2cP0GN+C/7SeDaZLf+MhFZ15gbi9e7a+lr92pfp6ml6/HV5+gL6zdwMlxfpcns950OLF9LuqCJ/iSLHtVfziLwZH0V4+zagiP3rMOA8STWdGAgs6zi3Tq4i+wK7C12jdKLiHaijLXvVwPXYj5pQvjrDyjtPsnmLZ1HJaIwf7KvuZ6ZTyaXMQ21gtPPYpvk2lBDu58b9P+unRA+O4RQM8nHtxJkvh+4W8Y/pjA6Zw6FQwViHsW3bzoHBHEmYKbuIUIFhlCtAL/6H4Ig6+/+bjex7X26a3WFYy1/3YNOuhPXnB3iPD0MEQoaBAhQxii9IUIXSy8YxGeHYAIJUjQyY8g9SgC66WXl/G4H41dyPghHd0O0nFnGcTE2KpvFBPbBaOYWjF6Ec2zfD8YwhF4GuKb9XyzGDYQJXT9BcNlKhDyF8whWJyq6DIyCGi+AG2bOb+WBQ/m/vjnsN9PXDB7XII3hNj+1CvyXIWXCOYAFiT4tCW+pAm+9b1wlgzsp8WN9Mr98IE32rAjLrsTR5osVBB+jOtbR3BGgws/2nU2hSRjEgIYfwwR6659e5ySr2N/yMz72+HlZDTsDbNF5xpZLXg9zsD7Js79lJ3qlySZ2Gjm/fjTNB7P7KCJb7PirLfEJG4PJgSxkmUEUDTCXHk/c0QpUlqzRRuqDgaIbnuAOAIaUHTzXjvA+4uAhOAIU0MWTcyzxaHoKl8dgKuEeE0GVxnM1y6Di58OQWLg8hYikzsIL96AXqzFFq980PBTKajobw4crIotZNtvj9GAQ2nRdRId7LcP2I4M4lSUSPHjGIp60b8dTqfptDqw65eE//Kv8SSd/e2u2K3A8cIhT6sGRb4mtdaYUK20UkZ7HI4EUkxzTTCl0lAudtHRK6V9Wift0+bSPm2ftAWTihMIDwV0ec5FHkoaysCLEsoYSNwYsi9xn9WJ+6y5uM9aJm6ggURhI+A/Rg0W0ksbI25BoAxrwgxXjO+ic9eQxCAiTxUXH2hB3pW0cfXA3uqB8eKDJZLboVZNJ1fgO1RSWddD93m7BYvguCWTVBvDDHBFteCWUmkJ9oArwjEXwS0qMNdUErDWjBmwGTvykE/BLVsHDVBMYbQEakk4J0pRmVNMwYBWMgogYMDMcxzEONfacEooV5I9X45T4pptA0YioJIUPCUYcEbMkm9qYZTEWhMitQiDAEwiJSR4AQbxDYf/ni0uRV/78yEwKYoUz+2d3IUT/gyCKYc8q67055LDnW92nlf+lLmY5+0hVRJRCB0xeAtsOzwPoiU2h1AId5yglxe6hyqs5NeCMvTiaZbMhvE4xAIZfP5gwYqSm8laNFmHllOJUZyts99C0DSvo2H3JmMti1o5GCyOKbPJM7BvOUWQSLOi1Xt0bamT/+lm+Z/eV/6nLZW/hMALoiyliDTYhNF+ijApRAOPk83cDoGzzQic3ReBs1YiUPQLwhR+9k3VKghbBW3birxVULgKIldB5x5O6v7fULu2BavbEjxJvD2hFHGqBWZSMTDz9ICShy0FqBHNA3gkBxS5oEYyaTNch4JPt534NGJ7miHDoaGx+AjxfEl40U3/4xDInkDMmjNfGYbFSvKe0B049ffT7CIFhxiPKvJp/6gb9U42O9lCPi25n5LkFaT4EXPwLm12W5dXs7JlDCnFwN9wH0btaBykaWqtHBglJUwKjR7I8loW6VKBjJTGUGAbBMybXHA9zYzWSglGQVF2oR/Vybdt8Dh9GB5Vh7cGD2kt0xIPIRbkT+olIJLwveXntkHk7GGIVB3eFkQIxGHY8BIiQAwVJYQFRITaew7vDnpYSxIbUMVawlhLG2vJ42NRyH0TyXpvuQ8e+ZBg+JHuvEwmV5x77vT16giJDGOD4FykwHYgS8AvKeSzjYY3Usm2YbRemcrCAOJKaSoxSHFNFDMYDJgGGnkw0FQZnbZAs16pyvNpKkKtKJXXniOC7SwCzqThBGMuoPVzxajo7f95AGSS2qmCgUzaKm+yqm+7iM0qE4nV/p5YEa9796vNnnctqXjVHmZJkZC8FH6BHxJYyzz6kk+RUqylIfdML5ZhvCrB+LpJWP26NUG0VRdMizYu0Bq2mKcCP7uYLHVHUnEbqf/SROq/tErqtUZq/8nDbST9axNJ/9oaSROB8lJajohakfNOunQ1LXzthfqLZ2W/1hE86pt98c2Gnqr9eS9iRg+Yhn1pTdTYjHQRirSUONf1A8rfDduDSGnyX4lhCYEoZjR3bYQcDAx/tgaGZnSKGkQMkN4ACXtGgBSt/8cAyFoQ6c3665LZP99s2tfhPW9N6G+Q4Ss4Uj+jnoI15KsJphxfTRFlAufTbdlzMnzbAHxaR+0GzQAetAZgjFhhWjvWnhZQgTAN0w0UAuTlQsUPDNMw+akcq100w/SiNZgCpePr8a8rZjGhXhEjo7VZek7xfA2xzeufDmdVIzPnJURHmxEtJPZHLYKzwtzeVtpmW5zEGRKKUSKk97J7nz+7AZJBCZLLBpBctggSbx5vawyoxUExpAEDbmPUVkMwbgDB+H8Q7AKCSQMIJv+DoBaCTSNVbw4g5QEMytWmCEKJ/UWD+CUyRBomjBISG6V2kf2oqKB7U1dB97VBf/56v/68gxHEuxekEOBzmaSYGck4gSBrD136ZjKF89l+EwTyKbnJoKe4/Mdfv87T7G/Eb9yhRUln0LZTPPDB0n6A7VhJ37jujJFgii8H0JgfPhDFQYXimjR3C4cWhEO3Fw5tk3BANqsxPFYqn8qnsV7J1wjRTDqsIB22vXRYm6QjIchdSWaFcSdgPkoUklm8mXB4QTj85fbS4W2Rjrv/1yuN35+fz5LMJaM8tWfbyUIUZCEayEK0RRbuoQF8oXDwmMTosGwTw0oLbN2l85m1NuZ+FcxfSz6xIsP8B9nsJ++sYf6jwpw/2YxJTRToGyXccDBKIeUJVgxCE6HByBPwmI+zutj9ipjLkFSkn5tBUn2C9kCiaBkSIpBScgnJ/grLK8qYy5hUJKqbYVJ9grZgYqe1Ki6WoHivTjhiCowQC6DIPS5ZWymvulpmt6u6mvkPUgKzvng4v0RFpW1+iYoCT7eruqr57k6ybV3zH3tcUre+h+2vsrlKO/Z475sW2dWLebKFPLvRMqzuCm6cYyBjWEMMKO1LBp7PQHbj8uYWAbWefBcrC+8WxqldWpAxJKRQhmBwO0we0GLI1YaoLShtXpZ3JXUQCtKZLVAjWjAjtKDsOWWFNkUEbw9h5E8gg+0sAUDH/Qo0BiBjVGk/HiWZ2kVN4bZ1z7lPf1uKA643++a1yufrJ6WPq6OtGIFcIUzDUgtjsFmWzHL7fhotIVwT2ISFeJ689DmPgR6h+DnH8rqE5bsmwfi7u1Rvf6O7oEHAUMsapJHgaqlB+gkWVdpO8O+bCP59axjPU1quBtXQ9XL/0ETuH1ojd4oIy4Vrf4WXIwABZUyY/FsmdzEkU80033kJv/f07kMdW2S+2STngeOc9aX3YnjsgNncpEXBZmWFdC11owZJTRkVxM6vM8/4dRDrmIxbhEkzmoYpopJixbmU1jIczlzhtDWIlCiZ2EjJCEFccKKxkBxTOyz4jCCpzCrJYobtdPuskmxTVkkgQYkCE2ao/SV8/pEAulhJb9IoX0z13jb9qIoptwbCUW0SzhFHdmSb2YSQ+0XzQW6NFaYqSIfWCmdDgPWvAyDzxK59pfNqHSFZyMzA11JKRtyXBD/SAjObpPnvA5AmJ0gKblyfsr/MYv0kSQ2noQvyXaS5Kmqi/uWj13+Xotvp5ui1UBM1fYg252+lfZQxEMqQAfO20OWQr6IciVVyIUIMoaldlI9ICCEYIYrvKIR4eH5+WsKnahCENqF+1SdoCx3kGEkCzI9Yt6XClABmS94Y1WCTlTBsj0taVeTny5BUDY80gqT6BG2BhAmk7LuuiaJg7IkOL2EDamSEtm9d0lpwQfb21qWK/HwZk6qhk0aYVJ+gNZhwu9i0BlwoN5qGCeWUIK2wdCvycsVdEdETpudpfXqe1qfnad2AS1UOnNan52l9ep7Wp+fv7CNbp+f3OOO93qHuMT3/oKrUB9/7WoG09ezGaIO5BmIqQoLejf1wu0SfLSzSIsRaEJkZCHE5BLWECUyfb0Jxm+x8e3DSyC6JLIwBv6KwkSSvHCZMY0mMkRAlM0NDVTtcG3H4MRxzA5EyO5yBn2pL1BacjjQigkr7qj/w/xAIyFD+boRbEd6OLYAPCkGZoMguIa/ckkuUk0N5i9HHQ+CgDAJpIUg+HqTz4SDFGOX5hB2xCw666fVGVS79YykM+LbZNa9l57+1hptq0AchmRZSKYxFTvwFmDnFMfBSSQWX4cWOT/Kqo6oI6DGS8wHKbyUoPzWJxD+1JurmGhmlIaxQWjBFaHj9gp34rIVWdrFlxrTZSa6ySW6+Vu6/NZH7b+2RO0dEMqEt1QSxMyUWcqeEY7vquH1nKnnq3Hyt3D83kfvn9sj96dxFNcv85AX8m6d2n+uYIg9rxuWp+czzvfk9i6/5ATO5q4elgZ+Ut0FHlMq9DpwJZTM2zzbSXEclaw0mDTkao9qyAo0xBViAMxwMJPMWKUojQkYFgCUADy2pgtbPql56mwrfumreWSO+MGvN/H4wd6BArFSJaKt8VyvizBaEQTx2Ne89AArLzb0rAXR9lz9eL7h+/JKlXYOkngCjl/ch4h6jcrHjt4YYfWszRqI9inS2GaSFCV3DaeRxuizh9KrR5NNXd4FUTTF2sDgPlVzaqaaa+AVQQ+JeYQ3Y2Uw+d6s0hmV6OEZ2+Y1FnSCtZBxiS8ZRXdyki5VfZ9sXN+k2FTcxiWzx0mIJHl/5RRXSXOKc0jHRcM0SU6z8aiAc0ybhcIGEXhgAHhacoIjb9Uvyui9eWxW3na52va7GJV39vYmq/n4vTbVvORj4TddvHuMFcAxxSaghvgI0vLRdQkfTUuSL84cXJDKNtOJ8sciJesSxgTqBz/PJEVlJ5C8brmFx36n4u5A7kYoiYcD4Ui25oN5CSoERN5YjAwHg+TvF1sRO8hzZo8i9emHS373MX1bMq4/vknopX/n4JOv+0QMR9pUTy3Eu6rkvGFaBVwbFwgtFmGVfium8vO85vYJnO/WKQ61FCebThquRtEm57FppdiTDMMVsqEFImH6E4WvQOU4V7ODhjddPYdWy5WDmuuDPGi450ibBE0Uk0oxjaV+vy7HxZg3UCRmiseJGC8IUeSqzdpo7k7MKwXebGrZumwwbJUhRLhjxeROu/JQ7CIqkIXiRZQmLV0AIjiBSVFoqzDHd2et4n9Cydess26tmCvaqTQp2JATSEBzYF5LamTzBe2GFhAQtAw2TdkT96aO1Ksv2UzPB/9QmwRNQKYgcMBgvgoUOs0qMVIhDaIAN4RRr82Tx2qtc7j9VyL3X1LD12mTYwKMYcCWYhES8l7wNlInki6y9dylHnDJEIVwzVNmVeSCYe7Z2bcMiznEFyP27QC5M8ui3CeGq4Pu2Jla33B1zirTRRGvDqd29G4zvBU23ApqkETRJm6CpCB9ua4IN98ZfpZAdyNMSw0GC7Ygv3QuZXgUy542QOW8TMhUG8LbaWrpqaCWRMhRLJYEQGb13YOoChn7uuJIKeF41mtzx6q7i2k0lNs3BWS5te+Tt1dazPAQHe2dfk2FXwBQm6BTBlCJAh1INABGVv0YWSwTUyb5jgwgpqSCVwcS2w+Mgy/EMBOH8lf08SNJB0p3GP/4XUEsHCAmyn5RIFQAA/rYAAFBLAQIUABQACAgIADwQ5EDWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAICAgAPBDkQAmyn5RIFQAA/rYAAAwAAAAAAAAAAAAAAAAAXQAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAADfFQAAAAA=" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /> | + | <ggb_applet width="1366" height="607" version="4.0" ggbBase64="UEsDBBQACAgIADwQ5EAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIADwQ5EAAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7V1Zc9tGtn7O/AoUH+YpavW+ZORMWXIy48TbjB3XrbykQBKiGFMETYJaXPPj5/QCkiAAipBECuIdJRZEorGdr8/y9TndOPn7zeUoukqms2E6ftEhCHeiZNxL+8Px4EVnnp0f6c7ff/zLySBJB0l3Gkfn6fQyzl50uG057L/oKG5ifB73jhJOzRHXUh11Wb97ZNS5EJT2kkSIThTdzIY/jNN38WUym8S95GPvIrmM36S9OHMXvsiyyQ/Hx9fX1yi/FEqng+PBoItuZv1OBLc5nr3ohD9+gNMVDrpmrjnFmBz/39s3/vRHw/Esi8e9pBPZR5gPf/zLdyfXw3E/vY6uh/3sAh6YadqJLpLh4CKzz8I70bFtNQGJTJJeNrxKZnDsykf30NnlpOOaxWO7/zv/VzRaPE8n6g+vhv1k+qKDEcVGc6wJ5sRITWQnSqfDZJyFtiRc8zg/28nVMLn2p7V/uSvCjWVpOurG9ozRf/4TUUxx9L3dEL+hsJHS78L+O8z8hvoN9xvh23B/OPdNuW/DfRvOOtHVcDbsjpIXnfN4NAMRDsfnU4Bv8XmW3Y4Sdz/hi+XTk+/hmWbDb9CYYegnXubwPcbf238S/nG747j4kGTlqtl03vCi+SUJk3L7a9IHPSnLL0pNxXNSUfOccsNF/YNv9aBi5ZpwKfe/+1e6Itv0mOtX9J8fdkHJ9/KIJ8e5rpwE9YhmF7Zt6D5ZcjmzCsNMJIzt9yQSoBxSQTcXETGwUTQCdYiIiLiAj0RH0m5VxBTs4BGLdGTbERY57RAafnHlTiYjASez3ypQyojAhXgkWEScUvEIVClyiglKShm0ECIScJC9PKH2FExGXMInpiMO92h1UhFoyOBA+AyXpxEjEbMHExVRGUl7PsKtrkttbx1OSSOJI0nsCUGtQaW9OkN7HTH7NDKIaziezLOCiHqX/fzPLJ0ssIDWYJCWZs8bqIJV/O5kFHeTEXiKjxbJKLqKR1Yj3IXO03EW5SBS/91gGk8uhr3ZxyTL4KhZ9Gd8Fb+Js+TmZ2g9y6/t2vbS8ezDNM3O0tH8cjyLol46wot7Tkdk5W+6uGv4wFZ28NUdYmWHXPlbVV43hT3RfJbA9dPpLG8e9/uvbYulaQBJvh+Pbk+nSfxlkg6Lj3Fy7JzOSTLvjYb9YTz+DJ3VXsXKJVr6IGuvch8klMnvJJ32P97OoAtHN78n0xSMDJaIco4ZNZSAPxGqE936XZxoRMhiHzbgdGe9eOTsIeJGGU6ZlpoRKsEW3Nbs48RfPLlagBTfJMvnHUytcq98eD07TUfLr5wIzuJJNp+6CALs49Q+18vxYJS4buIsLrjn3pduevMxGGx/rk+3E/iE/R10B070EZgHaiOIQdh2/da1sbe2aIVdG+xa4LzDDfuL/cRQ18Jtu37rWkEP9rcWHpXkj0lwfpnhzBk13Amqkxss2/+ts5+Ph9mb/EM27H0Jj0r8Ae/ml91k0YuK5ySPdc6T47VudvIlmY6TUejVAOY8nc+8kq50+H7SG17CR78jiCS2cP0GN+C/7SeDaZLf+MhFZ15gbi9e7a+lr92pfp6ml6/HV5+gL6zdwMlxfpcns950OLF9LuqCJ/iSLHtVfziLwZH0V4+zagiP3rMOA8STWdGAgs6zi3Tq4i+wK7C12jdKLiHaijLXvVwPXYj5pQvjrDyjtPsnmLZ1HJaIwf7KvuZ6ZTyaXMQ21gtPPYpvk2lBDu58b9P+unRA+O4RQM8nHtxJkvh+4W8Y/pjA6Zw6FQwViHsW3bzoHBHEmYKbuIUIFhlCtAL/6H4Ig6+/+bjex7X26a3WFYy1/3YNOuhPXnB3iPD0MEQoaBAhQxii9IUIXSy8YxGeHYAIJUjQyY8g9SgC66WXl/G4H41dyPghHd0O0nFnGcTE2KpvFBPbBaOYWjF6Ec2zfD8YwhF4GuKb9XyzGDYQJXT9BcNlKhDyF8whWJyq6DIyCGi+AG2bOb+WBQ/m/vjnsN9PXDB7XII3hNj+1CvyXIWXCOYAFiT4tCW+pAm+9b1wlgzsp8WN9Mr98IE32rAjLrsTR5osVBB+jOtbR3BGgws/2nU2hSRjEgIYfwwR6659e5ySr2N/yMz72+HlZDTsDbNF5xpZLXg9zsD7Js79lJ3qlySZ2Gjm/fjTNB7P7KCJb7PirLfEJG4PJgSxkmUEUDTCXHk/c0QpUlqzRRuqDgaIbnuAOAIaUHTzXjvA+4uAhOAIU0MWTcyzxaHoKl8dgKuEeE0GVxnM1y6Di58OQWLg8hYikzsIL96AXqzFFq980PBTKajobw4crIotZNtvj9GAQ2nRdRId7LcP2I4M4lSUSPHjGIp60b8dTqfptDqw65eE//Kv8SSd/e2u2K3A8cIhT6sGRb4mtdaYUK20UkZ7HI4EUkxzTTCl0lAudtHRK6V9Wift0+bSPm2ftAWTihMIDwV0ec5FHkoaysCLEsoYSNwYsi9xn9WJ+6y5uM9aJm6ggURhI+A/Rg0W0ksbI25BoAxrwgxXjO+ic9eQxCAiTxUXH2hB3pW0cfXA3uqB8eKDJZLboVZNJ1fgO1RSWddD93m7BYvguCWTVBvDDHBFteCWUmkJ9oArwjEXwS0qMNdUErDWjBmwGTvykE/BLVsHDVBMYbQEakk4J0pRmVNMwYBWMgogYMDMcxzEONfacEooV5I9X45T4pptA0YioJIUPCUYcEbMkm9qYZTEWhMitQiDAEwiJSR4AQbxDYf/ni0uRV/78yEwKYoUz+2d3IUT/gyCKYc8q67055LDnW92nlf+lLmY5+0hVRJRCB0xeAtsOzwPoiU2h1AId5yglxe6hyqs5NeCMvTiaZbMhvE4xAIZfP5gwYqSm8laNFmHllOJUZyts99C0DSvo2H3JmMti1o5GCyOKbPJM7BvOUWQSLOi1Xt0bamT/+lm+Z/eV/6nLZW/hMALoiyliDTYhNF+ijApRAOPk83cDoGzzQic3ReBs1YiUPQLwhR+9k3VKghbBW3birxVULgKIldB5x5O6v7fULu2BavbEjxJvD2hFHGqBWZSMTDz9ICShy0FqBHNA3gkBxS5oEYyaTNch4JPt534NGJ7miHDoaGx+AjxfEl40U3/4xDInkDMmjNfGYbFSvKe0B049ffT7CIFhxiPKvJp/6gb9U42O9lCPi25n5LkFaT4EXPwLm12W5dXs7JlDCnFwN9wH0btaBykaWqtHBglJUwKjR7I8loW6VKBjJTGUGAbBMybXHA9zYzWSglGQVF2oR/Vybdt8Dh9GB5Vh7cGD2kt0xIPIRbkT+olIJLwveXntkHk7GGIVB3eFkQIxGHY8BIiQAwVJYQFRITaew7vDnpYSxIbUMVawlhLG2vJ42NRyH0TyXpvuQ8e+ZBg+JHuvEwmV5x77vT16giJDGOD4FykwHYgS8AvKeSzjYY3Usm2YbRemcrCAOJKaSoxSHFNFDMYDJgGGnkw0FQZnbZAs16pyvNpKkKtKJXXniOC7SwCzqThBGMuoPVzxajo7f95AGSS2qmCgUzaKm+yqm+7iM0qE4nV/p5YEa9796vNnnctqXjVHmZJkZC8FH6BHxJYyzz6kk+RUqylIfdML5ZhvCrB+LpJWP26NUG0VRdMizYu0Bq2mKcCP7uYLHVHUnEbqf/SROq/tErqtUZq/8nDbST9axNJ/9oaSROB8lJajohakfNOunQ1LXzthfqLZ2W/1hE86pt98c2Gnqr9eS9iRg+Yhn1pTdTYjHQRirSUONf1A8rfDduDSGnyX4lhCYEoZjR3bYQcDAx/tgaGZnSKGkQMkN4ACXtGgBSt/8cAyFoQ6c3665LZP99s2tfhPW9N6G+Q4Ss4Uj+jnoI15KsJphxfTRFlAufTbdlzMnzbAHxaR+0GzQAetAZgjFhhWjvWnhZQgTAN0w0UAuTlQsUPDNMw+akcq100w/SiNZgCpePr8a8rZjGhXhEjo7VZek7xfA2xzeufDmdVIzPnJURHmxEtJPZHLYKzwtzeVtpmW5zEGRKKUSKk97J7nz+7AZJBCZLLBpBctggSbx5vawyoxUExpAEDbmPUVkMwbgDB+H8Q7AKCSQMIJv+DoBaCTSNVbw4g5QEMytWmCEKJ/UWD+CUyRBomjBISG6V2kf2oqKB7U1dB97VBf/56v/68gxHEuxekEOBzmaSYGck4gSBrD136ZjKF89l+EwTyKbnJoKe4/Mdfv87T7G/Eb9yhRUln0LZTPPDB0n6A7VhJ37jujJFgii8H0JgfPhDFQYXimjR3C4cWhEO3Fw5tk3BANqsxPFYqn8qnsV7J1wjRTDqsIB22vXRYm6QjIchdSWaFcSdgPkoUklm8mXB4QTj85fbS4W2Rjrv/1yuN35+fz5LMJaM8tWfbyUIUZCEayEK0RRbuoQF8oXDwmMTosGwTw0oLbN2l85m1NuZ+FcxfSz6xIsP8B9nsJ++sYf6jwpw/2YxJTRToGyXccDBKIeUJVgxCE6HByBPwmI+zutj9ipjLkFSkn5tBUn2C9kCiaBkSIpBScgnJ/grLK8qYy5hUJKqbYVJ9grZgYqe1Ki6WoHivTjhiCowQC6DIPS5ZWymvulpmt6u6mvkPUgKzvng4v0RFpW1+iYoCT7eruqr57k6ybV3zH3tcUre+h+2vsrlKO/Z475sW2dWLebKFPLvRMqzuCm6cYyBjWEMMKO1LBp7PQHbj8uYWAbWefBcrC+8WxqldWpAxJKRQhmBwO0we0GLI1YaoLShtXpZ3JXUQCtKZLVAjWjAjtKDsOWWFNkUEbw9h5E8gg+0sAUDH/Qo0BiBjVGk/HiWZ2kVN4bZ1z7lPf1uKA643++a1yufrJ6WPq6OtGIFcIUzDUgtjsFmWzHL7fhotIVwT2ISFeJ689DmPgR6h+DnH8rqE5bsmwfi7u1Rvf6O7oEHAUMsapJHgaqlB+gkWVdpO8O+bCP59axjPU1quBtXQ9XL/0ETuH1ojd4oIy4Vrf4WXIwABZUyY/FsmdzEkU80033kJv/f07kMdW2S+2STngeOc9aX3YnjsgNncpEXBZmWFdC11owZJTRkVxM6vM8/4dRDrmIxbhEkzmoYpopJixbmU1jIczlzhtDWIlCiZ2EjJCEFccKKxkBxTOyz4jCCpzCrJYobtdPuskmxTVkkgQYkCE2ao/SV8/pEAulhJb9IoX0z13jb9qIoptwbCUW0SzhFHdmSb2YSQ+0XzQW6NFaYqSIfWCmdDgPWvAyDzxK59pfNqHSFZyMzA11JKRtyXBD/SAjObpPnvA5AmJ0gKblyfsr/MYv0kSQ2noQvyXaS5Kmqi/uWj13+Xotvp5ui1UBM1fYg252+lfZQxEMqQAfO20OWQr6IciVVyIUIMoaldlI9ICCEYIYrvKIR4eH5+WsKnahCENqF+1SdoCx3kGEkCzI9Yt6XClABmS94Y1WCTlTBsj0taVeTny5BUDY80gqT6BG2BhAmk7LuuiaJg7IkOL2EDamSEtm9d0lpwQfb21qWK/HwZk6qhk0aYVJ+gNZhwu9i0BlwoN5qGCeWUIK2wdCvycsVdEdETpudpfXqe1qfnad2AS1UOnNan52l9ep7Wp+fv7CNbp+f3OOO93qHuMT3/oKrUB9/7WoG09ezGaIO5BmIqQoLejf1wu0SfLSzSIsRaEJkZCHE5BLWECUyfb0Jxm+x8e3DSyC6JLIwBv6KwkSSvHCZMY0mMkRAlM0NDVTtcG3H4MRxzA5EyO5yBn2pL1BacjjQigkr7qj/w/xAIyFD+boRbEd6OLYAPCkGZoMguIa/ckkuUk0N5i9HHQ+CgDAJpIUg+HqTz4SDFGOX5hB2xCw666fVGVS79YykM+LbZNa9l57+1hptq0AchmRZSKYxFTvwFmDnFMfBSSQWX4cWOT/Kqo6oI6DGS8wHKbyUoPzWJxD+1JurmGhmlIaxQWjBFaHj9gp34rIVWdrFlxrTZSa6ySW6+Vu6/NZH7b+2RO0dEMqEt1QSxMyUWcqeEY7vquH1nKnnq3Hyt3D83kfvn9sj96dxFNcv85AX8m6d2n+uYIg9rxuWp+czzvfk9i6/5ATO5q4elgZ+Ut0FHlMq9DpwJZTM2zzbSXEclaw0mDTkao9qyAo0xBViAMxwMJPMWKUojQkYFgCUADy2pgtbPql56mwrfumreWSO+MGvN/H4wd6BArFSJaKt8VyvizBaEQTx2Ne89AArLzb0rAXR9lz9eL7h+/JKlXYOkngCjl/ch4h6jcrHjt4YYfWszRqI9inS2GaSFCV3DaeRxuizh9KrR5NNXd4FUTTF2sDgPlVzaqaaa+AVQQ+JeYQ3Y2Uw+d6s0hmV6OEZ2+Y1FnSCtZBxiS8ZRXdyki5VfZ9sXN+k2FTcxiWzx0mIJHl/5RRXSXOKc0jHRcM0SU6z8aiAc0ybhcIGEXhgAHhacoIjb9Uvyui9eWxW3na52va7GJV39vYmq/n4vTbVvORj4TddvHuMFcAxxSaghvgI0vLRdQkfTUuSL84cXJDKNtOJ8sciJesSxgTqBz/PJEVlJ5C8brmFx36n4u5A7kYoiYcD4Ui25oN5CSoERN5YjAwHg+TvF1sRO8hzZo8i9emHS373MX1bMq4/vknopX/n4JOv+0QMR9pUTy3Eu6rkvGFaBVwbFwgtFmGVfium8vO85vYJnO/WKQ61FCebThquRtEm57FppdiTDMMVsqEFImH6E4WvQOU4V7ODhjddPYdWy5WDmuuDPGi450ibBE0Uk0oxjaV+vy7HxZg3UCRmiseJGC8IUeSqzdpo7k7MKwXebGrZumwwbJUhRLhjxeROu/JQ7CIqkIXiRZQmLV0AIjiBSVFoqzDHd2et4n9Cydess26tmCvaqTQp2JATSEBzYF5LamTzBe2GFhAQtAw2TdkT96aO1Ksv2UzPB/9QmwRNQKYgcMBgvgoUOs0qMVIhDaIAN4RRr82Tx2qtc7j9VyL3X1LD12mTYwKMYcCWYhES8l7wNlInki6y9dylHnDJEIVwzVNmVeSCYe7Z2bcMiznEFyP27QC5M8ui3CeGq4Pu2Jla33B1zirTRRGvDqd29G4zvBU23ApqkETRJm6CpCB9ua4IN98ZfpZAdyNMSw0GC7Ygv3QuZXgUy542QOW8TMhUG8LbaWrpqaCWRMhRLJYEQGb13YOoChn7uuJIKeF41mtzx6q7i2k0lNs3BWS5te+Tt1dazPAQHe2dfk2FXwBQm6BTBlCJAh1INABGVv0YWSwTUyb5jgwgpqSCVwcS2w+Mgy/EMBOH8lf08SNJB0p3GP/4XUEsHCAmyn5RIFQAA/rYAAFBLAQIUABQACAgIADwQ5EDWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAICAgAPBDkQAmyn5RIFQAA/rYAAAwAAAAAAAAAAAAAAAAAXQAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAADfFQAAAAA=" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /><br /> |
<u>braun</u> (bild 1, 2, 3):<br /> | <u>braun</u> (bild 1, 2, 3):<br /> | ||
erste schubspiegelung<br /> | erste schubspiegelung<br /> |
Version vom 6. Juli 2012, 07:27 Uhr
Was ergibt die Verkettung zweier Schubspiegelungen?
gerade sehe ich, dass die verschiebung bei einer schubspiegelung immer parallel zur spielgelgeraden verläuft, die vektoren im bild sind daher alle falsch :-(
--Studentin 02:06, 4. Jul. 2012 (CEST)
die schlussfolgerungen sollten sich jedoch nicht ändern...--Studentin 02:07, 4. Jul. 2012 (CEST)
braun (bild 1, 2, 3):
erste schubspiegelung
rot (bild 4a und 5a):
zweite schubspiegelung, fall 1: wenn die zweite spiegelgerade im rechten winkel zur ersten spiegelgerade steht, kann das bild auch durch eine drehung durch d1 erfolgen.
blau (bild 4b und 5b):
zweite schubspiegelung, fall 2: wenn die beiden spiegelachsen parallel (oder identisch) zueinander sind, kann das bild auch durch verschiebung dargestellt werden.
grün (bild 4cund 5c):
zweite schubspiegelung, fall 3:zwei spiegelgeraden weder senkrecht noch parallel: drehung durch d2
--Studentin 02:00, 4. Jul. 2012 (CEST)