Wichtige Begriffe der Geometrie - Glossar: Unterschied zwischen den Versionen
Aus Geometrie-Wiki
(→Definition II.2: (Strecke, Endpunkte einer Strecke)) |
(→Definition II.3: (Länge einer Strecke)) |
||
Zeile 76: | Zeile 76: | ||
===== Definition II.3: (Länge einer Strecke) ===== | ===== Definition II.3: (Länge einer Strecke) ===== | ||
− | : | + | :::Es seien <math>\ A</math> und <math>\ B</math> zwei verschiedene Punkte. Der Abstand <math>\vert AB \vert</math> heißt Länge der Strecke <math>\overline{AB}</math>. OK? --[[Benutzer:Sternchen|Sternchen]] 13:09, 5. Jun. 2010 (UTC) |
+ | |||
===== Definition II.3: (Halbgerade, bzw. Strahl) ===== | ===== Definition II.3: (Halbgerade, bzw. Strahl) ===== | ||
::[[Lösung_von_Aufgabe_6.5]] | ::[[Lösung_von_Aufgabe_6.5]] |
Version vom 5. Juni 2010, 14:09 Uhr
Hier soll ein Glossar wichtiger geometrischer Begriffe und Sätze (in Bezug auf unsere Veranstaltung)entstehen. Bitte ergänzen Sie!
Grundbegriffe
- disjunkt - elementfremd, nicht gleich
- identitiv - Asymmetrie
- inzidenz -
- kollinear - es gibt eine Gerade, die alle Punkte einer Menge enthält
- komplanar -
- reflexiv - jedes Element steht in Relation zu sich selbst
- symmetrisch -
- transitiv -
Axiome
- Inzidenzaxiome:
AXIOM I/0
- Geraden und Ebenen sind Punktmengen.
AXIOM I/1(Axiom von der Geraden)
- Zu zwei beliebigen verschiedenen Punkten gibt es genau eine Gerade, die die beiden Punkte enthält.
AXIOM I/2
- Zu jeder Geraden gibt es wenigstens zwei Punkte, die dieser Geraden angehören.
AXIOM I/3
- Es gibt wenigstens 3 Punkte, die nicht kollinear sind.
Axiom I/4
- Zu je drei nichtkollinearen Punkten gibt es genau eine Ebene, die diese drei Punkte enthält. Jede Ebene enthält (wenigstens) einen Punkt.
Axiom I/5
- Wenn zwei Punkte einer Geraden g in einer Ebene E liegen, so gehört g zu E.
Axiom I/6
- Wenn zwei Ebenen einen Punkt gemeinsam haben, so haben sie noch mindestens einen weiteren Punkt gemeinsam.
Axiom I/7
- Es gibt vier Punkte, die nicht komplanar sind.
- Abstandsaxiome:
Axiom II.1: (Abstandsaxiom)
- Zu je zwei Punkten und gibt es eine eindeutig bestimmte nicht negative reelle Zahl mit .
Axiom II.2:
- Für zwei beliebige Punkte und gilt .
Axiom II/3: (Dreiecksungleichung)
- Für drei beliebige Punkte und gilt:
Axiom III.1: (Axiom vom Lineal)
- Zu jeder nicht negativen reelen Zahl gibt es auf jedem Strahl genau einen Punkt, der zum Anfangspunkt von den Abstand hat.
Definitionen
Definition I/2: (kollinear)
- Eine Menge von Punkten heißt kollinear, wenn es eine Gerade gibt, die alle Punkte der Menge enthält.
- Schreibweise: koll(A, B, C, ...) Sollten die Punkte A, B, C einer Menge nicht kollinear sein, so schreibt man:nkoll(A, B, C)
Definition I/3: (Inzidenz Punkt Ebene)
- Ein Punkt P inzidiert mit einer Ebene E, wenn P ein Element der Ebene E ist.
Definition I/4: (Inzidenz Gerade Ebene)
- Eine Gerade g gehört zu einer Ebene E, wenn jeder Punkt von g zu E gehört.
Definition I/5: (Raum)
- Die Menge aller Punkte P wird Raum genannt.
Definition I/6: (komplanar)
- Eine Menge von Punkten heißt komplanar, wenn es eine Ebene gibt, die alle Punkte der Menge enthält. Schreibweise: komp(A, B, C, D, ...) (analog nkomp(..) für nicht komplanar)
Definition I/7: (komplanar für Geraden)
- Zwei Geraden g und h sind komplanar, wenn es eine Ebene gibt, in der beide Geraden vollständig liegen.
- Schreibweise: komp(g, h)
Definition I/8: (Geradenparallelität)
- Zwei Geraden g und h sind parallel, wenn sie identisch oder komplanar und schnittpunktfrei sind.
- In Zeichen: g||h.
Definition I/9: (windschief )
- Zwei Geraden g und h sind windschief, wenn sie schnittpunktfrei und nicht parallel sind.
Definition I/10: (parallel für Ebenen)
- Zwei Ebene E1 und E2 sind parallel, wenn sie keinen Punkt gemeinsam haben.
Definition II.1: (Abstand)
- Der Abstand zweier Punkte und ist die Zahl, die nach dem Abstandsaxiom den Punkten und zugeordnet werden kann.
Schreibweise: .
Definition II.1: (Zwischenrelation)
- Ein Punkt liegt zwischen zwei Punkten und , wenn gilt und der Punkt sowohl von als auch von verschieden ist.
- Schreibweise:
Definition II.2: (Strecke, Endpunkte einer Strecke)
- Es seien und zwei verschiedene Punkte. Die Punktmenge, die und sowie alle Punkte, die zwischen und liegen, enthält, heißt Strecke . Stimmt das? --Sternchen 13:07, 5. Jun. 2010 (UTC)
Definition II.3: (Länge einer Strecke)
- Es seien und zwei verschiedene Punkte. Der Abstand heißt Länge der Strecke . OK? --Sternchen 13:09, 5. Jun. 2010 (UTC)
Definition II.3: (Halbgerade, bzw. Strahl)
Definition III.1: (Mittelpunkt einer Strecke)
- Wenn ein Punkt der Strecke zu den Endpunkten und jeweils den selben Abstand hat, dann ist er der Mittelpunkt der Strecke .
Sätze
Satz I.1
- Es seien g und h zwei Geraden. Wenn g und h nicht identisch sind, haben sie höchstens einen Punkt gemeinsam.
Satz I.2: (Kontraposition von Satz I.1)
- Es seien g und h zwei Geraden.
- Wenn g und h mehr als einen Punkt gemeinsam haben, so sind g und h identisch.
Satz I.3: (Existenz von drei Geraden)
- Es existieren mindestens drei paarweise verschiedene Geraden.
Satz I.5:
- Zwei voneinander verschiedene Ebenen haben entweder keinen Punkt oder eine Gerade gemeinsam, auf der alle gemeinsamen Punkte beider Ebenen liegen.
Satz I.6:
- Eine Ebene und eine nicht in ihr liegende Gerade haben höchstens einen Punkt gemeinsam.
Satz I.7:
- Jede Ebene enthält (wenigstens) drei Punkte.
Satz II.1
- Aus folgt .
Satz II.2:
- Aus folgt .
Satz II.3
- Es sei mit sind paarweise verschieden.
Dann gilt oder oder .
Satz II.4
- Es sei ein Punkt einer Geraden .
Die Teilmengen , und bilden eine Klasseneinteilung der Geraden .
Satz III.1: (Existenz und Eindeutigkeit des Mittelpunkte einer Strecke)
- Jede Strecke hat genau einen Mittelpunkt.