Wichtige Begriffe der Geometrie - Glossar
Hier soll ein Glossar wichtiger geometrischer Begriffe und Sätze (in Bezug auf unsere Veranstaltung) entstehen. Bitte ergänzen Sie!
Grundbegriffe (undefinierte Begriffe)
- Punkt
- Gerade
- Ebene
Begriffsklärungen
- disjunkt - elementfremd, nicht gleich
- identitiv - antisymmetrisch, gleich
(z.B. wenn aRb und bRa dann a=b) --TimoRR 21:20, 5. Jun. 2010 (UTC) - inzident - beschreibt die Zugehörigkeit - Elementbezeichnung
(z.B. inzidiert ein Punkt mit einer Geraden g, wenn er zu der Geraden g gehört) --TimoRR 21:20, 5. Jun. 2010 (UTC) - kollinear - eine Gerade, die alle Punkte einer Menge enthält
- komplanar - eine Ebene, die alle Punkte einer Menge enthält --TimoRR 21:20, 5. Jun. 2010 (UTC)
- reflexiv - jedes Element steht in Relation zu sich selbst
- symmetrisch - wenn zwei Elemente in der gleichen Klasse liegen
(z.B. sind a€M und b€M, dann gilt aRb aber auch bRa) --TimoRR 21:20, 5. Jun. 2010 (UTC) - transitiv - wenn ein Element 1 zu dem nächsten Element 2 in Relation steht und das nächste
Element 2 zu dem übernächsten Element 3 in Relation steht, dann steht das Element 1 automatisch
auch in Relation zu dem übernächsten Element 3 in Relation --TimoRR 21:20, 5. Jun. 2010 (UTC)
"bitte überprüft das mal jemand ;-)"
- Das Problem ist, dass diese Erklärungen maximal Erinnerungsstützen sein können. Um auf der sicheren Seite zu sein, sollten Sie die Erkärungen in saubere Definitionen fassen.
Beispiel: Definition:(disjunkt)
Zwei Mengenund
sind disjunkt zueinander, wenn sie keine gemeinsamen Elemente haben.
- Aus meiner Sicht wäre es sinnvoll, wenn Sie diesen Abschnitt umbenennen in Basiswissen: Definitionen/Sätze und einen neuen Abschnitt zu den Erklärungen aufmachen. Dieser neue Abschnitt könnte dann Dinge beinhalten, die mehr oder weniger Prozeßwissen beinhalten. Ein Beispiel:
- Nichtfolgerbarkeit einer Aussage
aus einer Menge
von Axiomen
- Mitunter möchte man wissen, ob sich eine bestimmte Aussage
aus einer Menge
von Axiomen folgern läßt. Gelingt uns diese Folgerung, ist alles in Ordnung. Falls diese Folgerung nicht gelingt, haben wir ein Problem: Wir können uns nicht sicher sein, ob die Folgerung prinzipiell nicht möglich ist, oder ob es unser Unvermögen war, welches das Projekt Folgerung von
aus
scheitern ließ. Abhilfe bringt ggf. die Suche nach Modellen für
. In jedem Modell für
müssen auch alle Folgerunge gelten, die aus
abgeleitet werden können. Sollten wir nun ein Modell für
finden, in dem
nicht gilt ...
- Mitunter möchte man wissen, ob sich eine bestimmte Aussage
- Modell für eine Menge von Axiomen
- ...
*m.g.* 12:32, 9. Jun. 2010 (UTC)
Klasseneinteilung
- Es sei
eine Menge und
eine Menge von Teilmengen von
.
ist eine Klasseneinteilung von
, wenn gilt:
- notwendige Bedingung 1: Keine der Teilmengen ist die leere Menge.
- notwendige Bedingung 2: Je zwei Teilmengen sind disjunkt.
- notwendige Bedingung 3: Die Vereinigung aller Teilmengen ergibt wieder die Menge
.
- Mengen sind disjunkt, wenn die Schnittmenge dieser Mengen die leere Menge ist, bzw. die Mengen keine gemeinsamen Objekte besitzen.
Relationen
Definition: (n-stellige Relation)
- Es seien
Mengen, wobei keine dieser Mengen die leere Menge ist. Jede Teilmenge aus
ist eine
stellige Relation.
Definition: (Äquivalenzrelation)
- Eine Relation
in einer Menge
heißt Äquivalenzrelation, wenn sie reflexiv, symmetrisch und transitiv ist.
Axiome
- Inzidenzaxiome:
Axiom I.0:
- Geraden und Ebenen sind Punktmengen.
Axiom I.1: (Axiom von der Geraden)
- Zu zwei beliebigen verschiedenen Punkten gibt es genau eine Gerade, die die beiden Punkte enthält.
Axiom I.2:
- Zu jeder Geraden gibt es wenigstens zwei Punkte, die dieser Geraden angehören.
Axiom I.3:
- Es gibt wenigstens 3 Punkte, die nicht kollinear sind.
Axiom I.4:
- Zu je drei nichtkollinearen Punkten gibt es genau eine Ebene, die diese drei Punkte enthält. Jede Ebene enthält (wenigstens) einen Punkt.
Axiom I.5:
- Wenn zwei Punkte einer Geraden g in einer Ebene E liegen, so gehört g zu E.
Axiom I.6:
- Wenn zwei Ebenen einen Punkt gemeinsam haben, so haben sie noch mindestens einen weiteren Punkt gemeinsam.
Axiom I.7:
- Es gibt vier Punkte, die nicht komplanar sind.
- Abstandsaxiome:
Axiom II.1: (Abstandsaxiom)
- Zu je zwei Punkten
und
gibt es eine eindeutig bestimmte nicht negative reelle Zahl
mit
.
Axiom II.2:
- Für zwei beliebige Punkte
und
gilt
.
Axiom II/3: (Dreiecksungleichung)
- Für drei beliebige Punkte
und
gilt:
- Falls
, dann ist eine der folgenden Gleichungen erfüllt:
- Ist umgekehrt eine dieser drei Gleichungen erfüllt, so sind
,
und
kollinear.
Axiom III.1: (Axiom vom Lineal)
- Zu jeder nicht negativen reelen Zahl
gibt es auf jedem Strahl
genau einen Punkt, der zum Anfangspunkt von
den Abstand
hat.
Axiom III.2: (Das Axiom von Pasch)
- Gegeben sei ein Dreieck
. Ferner sei
eine Gerade, die durch keinen der drei Eckpunkte
geht. Wenn
eine der drei Seiten des Dreiecks
schneidet, dann schneidet
genau eine weitere Seite des Dreiecks
.
Axiom IV.1: (Winkelmaßaxiom)
- Zu jedem Winkel
gibt es genau eine reelle Zahl
zwischen 0 und 180.
- Zu jedem Winkel
Axiom IV.2: (Winkelkonstruktionsaxiom)
- Es sei
eine Gerade in der Ebene
. Zu jeder reellen Zahl
mit
gibt es in jeder der beiden durch
bestimmten Halbebenen der Ebene
genau einen Strahl
mit
- Es sei
Axiom IV.3: (Winkeladditionsaxiom)
- Wenn der Punkt
zum Inneren des Winkels
gehört , dann gilt
.
- Wenn der Punkt
Axiom IV.4: (Supplementaxiom)
- Nebenwinkel sind supplementär.
Axiom V: (Kongruenzaxiom SWS)
- Wenn für zwei Dreiecke
und
die folgenden 3 Kongruenzen
- Wenn für zwei Dreiecke
- gelten,
- dann sind die beiden Dreiecke
und
kongruent zueinander.
Euklidisches Parallelenaxiom
- Zu jedem Punkt
außerhalb einer Geraden
gibt es höchstens eine Gerade
, die durch
geht und zu
parallel ist.
- Zu jedem Punkt
Definitionen
Definition des Begriffs der Relation:
- Definition: (n-stellige Relation)
- Es seien
Mengen, wobei keine dieser Mengen die leere Menge ist. Jede Teilmenge aus
ist eine
stellige Relation.
- Es seien
- Definition: (Äquivalenzrelation)
- Eine Relation
in einer Menge
heißt Äquivalenzrelation, wenn sie reflexiv, symmetrisch und transitiv ist.
- Eine Relation
Definition I.2: (kollinear)
- Eine Menge von Punkten heißt kollinear, wenn es eine Gerade gibt, die alle Punkte der Menge enthält.
- Schreibweise: koll(A, B, C, ...) Sollten die Punkte A, B, C einer Menge nicht kollinear sein, so schreibt man:nkoll(A, B, C)
Definition I.3: (Inzidenz Punkt Ebene)
- Ein Punkt P inzidiert mit einer Ebene E, wenn P ein Element der Ebene E ist.
Definition I.4: (Inzidenz Gerade Ebene)
- Eine Gerade g gehört zu einer Ebene E, wenn jeder Punkt von g zu E gehört.
Definition I.5: (Raum)
- Die Menge aller Punkte P wird Raum genannt.
Definition I.6: (komplanar)
- Eine Menge von Punkten heißt komplanar, wenn es eine Ebene gibt, die alle Punkte der Menge enthält. Schreibweise: komp(A, B, C, D, ...) (analog nkomp(..) für nicht komplanar)
Definition I.7: (komplanar für Geraden)
- Zwei Geraden g und h sind komplanar, wenn es eine Ebene gibt, in der beide Geraden vollständig liegen.
- Schreibweise: komp(g, h)
Definition I.8: (Geradenparallelität)
- Zwei Geraden g und h sind parallel, wenn sie identisch oder komplanar und schnittpunktfrei sind.
- In Zeichen: g||h.
Definition I.9: (windschief )
- Zwei Geraden g und h sind windschief, wenn sie schnittpunktfrei und nicht parallel sind.
Definition I.10: (parallel für Ebenen)
- Zwei Ebene E1 und E2 sind parallel, wenn sie keinen Punkt gemeinsam haben.
Definition II.1: (Abstand)
- Der Abstand zweier Punkte
und
ist die Zahl, die nach dem Abstandsaxiom den Punkten
und
zugeordnet werden kann.
Schreibweise:.
Definition II.2: (Zwischenrelation)
- Ein Punkt
liegt zwischen zwei Punkten
und
, wenn
gilt und der Punkt
sowohl von
als auch von
verschieden ist.
- Schreibweise:
Definition II.3: (Strecke, Endpunkte einer Strecke)
- Es seien
und
zwei verschiedene Punkte. Die Punktmenge, die
und
sowie alle Punkte, die zwischen
und
liegen, enthält, heißt Strecke
.
- Es seien
Definition II.4: (Länge einer Strecke)
- Es seien
und
zwei verschiedene Punkte. Der Abstand
heißt Länge der Strecke
.
- Es seien
Definition II.5: (Halbgerade, bzw. Strahl)
- Eine informelle Definition:
- Definition: Halbgerade
- Gegeben seien zwei verschiedene Punkte
und
. Unter dem Strahl bzw. der Halbgeraden
versteht man die Strecke
vereinigt mit der Menge aller der Punkte, die man erhält, wenn man
über
hinaus verlängert.
- Gegeben seien zwei verschiedene Punkte
- Definition: Halbgerade
- Formulieren Sie eine mathematisch korrekte Definition des Begriffs Halbgerade
.
- Formulieren Sie eine mathematisch korrekte Definition des Begriffs Halbgerade
- Definition: Halbgerade
- Definition: Halbgerade
- diese Lösung ist richtig!--Schnirch 12:48, 16. Jun. 2010 (UTC)
- Gegeben seien zwei nicht identische Punkte
und
. Unter
wollen wir die Menge aller Punkte
verstehen, die man erhält, wenn man
über
hinaus verlängert. Geben Sie eine mathematisch korrekte Definition für die Menge dieser Punkte
an.
- Gegeben seien zwei nicht identische Punkte
- Lösung: Ergänzen Sie einfach die folgende Mengenschreibweise:
- diese Lösung ist richtig! --Schnirch 12:49, 16. Jun. 2010 (UTC)
Definition III.1: (Mittelpunkt einer Strecke)
- Wenn ein Punkt
der Strecke
zu den Endpunkten
und
jeweils den selben Abstand hat, dann ist er der Mittelpunkt der Strecke
.
Definition IV.1: (offene Halbebene)
- Es sei
eine Ebene in der die Gerade
liegen möge. Ferner sei
ein Punkt der Ebene
, der nicht zur Geraden
gehört.
Unter den offenen Halbebenenund
bezüglich der Trägergeraden
versteht man die folgenden Punktmengen:
- Es sei
muss es nicht heißen: \ g
da es sich um eine offene Halbebene handelt, darf g doch nicht enthalten sein, oder? --Frühling 15:10, 28. Jun. 2010 (UTC)
Nein, da 1. oben schon gesagt wurde, dass P nicht auf g liegen soll und 2. gäbe es somit auch keinen Schnittpunkt S. Also sind alle Punkte ausgeschlossen, die auf g liegen.
- Das ist falsch, Schafi. Es gäbe sehr wohl einen Schnittpunkt, denn auch die Endpunkte gehören zur Strecke. Frühling hat (bis auf Schreibfehler in der Formel) vollkommen recht. Ich hab's mal geändert. Bin mir mit der Schreibweise aber auch nicht überall sicher.
- --Sternchen 20:28, 22. Jul. 2010 (UTC) Ja, ich denke, das stimmt doch. Vielleicht heißt es: "für alle Punkte P nicht Element g"...
Definition IV.2: (Halbebene)
- Es sei
eine Gerade der Ebene
.
und
seien die beiden offenen Halbebenen von
bezüglich
. Unter den (geschlossenen) Halbebenen von
bezüglich
versteht die beiden Punktmengen, die durch die Vereinigung jeder dieser beiden offenen Halbebene von
bezüglich der Geraden
mit jeweils dieser Geraden
entstehen.
- Es sei
- Bemerkung: Für die formale Beschreibung von offenen und geschlossenen Halbebenen wird jeweils dieselbe Bezsichnung verwendet: offene Halbebene:
, (geschlossene) Halbebene:
. Derr weitere Gebrauch der Sprache kennzeichnet, ob es sich um eine offene oder um die geschlossene Halbene handeln soll. Aus Gründen der Vereinfachung sei vereinbart, dass
bzw.
immer die geschlossene Halbebene meint. Soll die offene Halbebene gemeint sein, so ist dieses durch den Zusatz "offen" zu kennzeichnen.
- --*m.g.* 21:50, 23. Jun. 2010 (UTC)
- Bemerkung: Für die formale Beschreibung von offenen und geschlossenen Halbebenen wird jeweils dieselbe Bezsichnung verwendet: offene Halbebene:
Dies habe ich aus dem Skript kopiert. --Rakorium 11:43, 7. Jul. 2010 (UTC)
Definition IV.3: (konvexe Punktmenge)
- Eine Menge
von Punkten heißt konvex, wenn mit je zwei Punkten
und
dieser Menge die gesamte Strecke
zu
gehört.
- Eine Menge
Definition V.1: (Winkel)
- Ein Winkel heißt die Vereinigungsmenge zweier Strahlen p und q, die einen gemeinsamen Anfangspunkt S haben.
oder
- Ein Winkel ist ein Paar Halbgeraden p, q mit gemeinsamen Anfangspunkt S.
Definition V.2: (Inneres eines Winkels)
- Das Innere eines Winkels
ist der Schnitt ...der beiden Halbebenen
und
- Das Innere eines Winkels
Definition V.3: (Scheitelwinkel)
- Die Winkel
und
sind Scheitelwinkel.
- Die Winkel
Definition V.4: (Nebenwinkel)
- Die Winkel
und
sind Nebenwinkel.
- Die Winkel
Definition V.5: (Größe eines Winkels)
- Die Zahl
, die entsprechend des Winkelmaßaxioms einem jeden Winkel
eindeutig zugeordnet werden kann, wird die Größe oder das Maß von
genannt.
In Zeichen:.
- Die Zahl
Definition V.6 : (Rechter Winkel)
- Wenn ein Winkel die selbe Größe wie einer seiner Nebenwinkel hat, so ist er ein rechter Winkel.
Definition V.7 : (Supplementärwinkel)
- Zwei Winkel heißen genau dann supplementär, wenn die Summe ihrer Größen 180 beträgt.
Definition V.8 : (Relation senkrecht auf der Menge der Geraden)
- Es seien
und
zwei Geraden. Wenn sich
und
schneiden und bei diesem Schnitt rechte Winkel entstehen, dann stehen die Geraden
und
senkrecht aufeinader.
- Es seien
- In Zeichen:
(in der Formelbeschreibungssprache Tex: \perp , läßt sich gut merken, von perpendicular)
- In Zeichen:
Definition V.9 : (noch mehr Senkrecht)
- Eine Gerade
und eine Strecke
stehen senkrecht aufeinander, wenn die
und die Gerade
senkrecht aufeinander stehen.
- Eine Gerade
Ergänzen Sie:
- Eine Strecke
und eine Strecke
stehen senkrecht aufeinander, wenn ... die Gerade AB und die Gerade CD senkrecht aufeinander stehen??? --Maude001 11:45, 27. Jun. 2010 (UTC)
- Eine Strecke
- Eine Gerade
und eine Ebene
stehen senkrecht aufeinander, wenn es in
... zwei Geraden gibt, die nicht parallel oder identisch sind und vollständig in
liegen und auf die
senkrecht steht. --Löwenzahn 15:18, 2. Jul. 2010 (UTC)
- Eine Gerade
Definition VI.1: (Mittelsenkrechte)
- Es sei
eine Gerade und
eine Strecke, die durch
im Punkt
geschnitten wird.
ist die Mittelsenkrechte von
, wenn
- Es sei
Definition VI.2
- Es seien
,
und
drei Halbgeraden ein und derselben Ebene mit dem gemeinsamen Anfangspunkt
. Die Halbgerade
ist die Winkelhalbierende des Winkels
, wenn
im Inneren von
liegt und die beiden Winkel
und
dieselbe Größe haben.
- Es seien
Definition VII.1: (Streckenkongruenz)
- Zwei Strecken sind kongruent, wenn sie dieselbe Länge haben.
- In Zeichen
- Zwei Strecken sind kongruent, wenn sie dieselbe Länge haben.
Definition VII.2 : (Winkelkongruenz)
- Zwei Winkel die dieselbe Größe haben heißen kongruent zueinander.
- In Zeichen:
- Zwei Winkel die dieselbe Größe haben heißen kongruent zueinander.
Definition VII.3: (Dreieckskongruenz)
- Wenn für zwei Dreiecke
und
die folgenden 6 Kongruenzen
- Wenn für zwei Dreiecke
- gelten,
- dann sind die beiden Dreiecke
und
kongruent zueinander.
Definition VII.4 : (gleichschenkliges Dreieck)
as können sie selbst. Bringen Sie in der Definition die Begriffe Basis, Basiswinkel und Schenkel eines gleichschenkligen Dreiecks unter.
Ein Dreieck mit zwei zueinanderkongruenten Seiten heißt gleichschenkliges Dreieck. Die beiden zueinander kongruenten Seiten heißen Schenkel des gleichseitigen Dreiecks. Die dritte Seite des gleichschenkligen Dreiecks heißt Basis. Die Innenwinkel eines gleichschenkligen Dreiecks, dessen Scheitelpunkte die Eckpunkte der Basis sind heißen Basiswinkel des gleichschenkligen Dreiecks.
--Rakorium 07:24, 8. Jul. 2010 (UTC)
Definition VIII.1: Außenwinkel eines Dreiecks
Alle Nebenwinkel der Innenwinkel eines Dreiecks heißen Außenwinkel des Dreiecks.
---mogli- 15:20, 17. Jul. 2010 (UTC)
Definition IX.1: (Lot, Lotgerade, Lotfußpunkt)
Es sei P ein Punkt, der nicht zur Geraden g gehören möge.
Die Gerade l, die senkrecht auf g steht und durch den Punkt P geht heißt Lotgerade von P auf g. Der Schnittpunkt L von l mit g, heißt Lotfußpunkt des Lotes von P auf g. Unter dem Lot von P auf g, versteht man die Strecke .
---mogli- 15:19, 17. Jul. 2010 (UTC)
Definition IX.2: (Abstand eines Punktes zu einer Geraden)
Es sei P ein Punkt außerhalb von g. Der Abstand von P zu g ist die Länge des Lotes von P auf g.
---mogli- 15:24, 17. Jul. 2010 (UTC)
Sätze
Satz I.1:
- Es seien g und h zwei Geraden. Wenn g und h nicht identisch sind, haben sie höchstens einen Punkt gemeinsam.
Satz I.2: (Kontraposition von Satz I.1)
- Es seien g und h zwei Geraden.
- Wenn g und h mehr als einen Punkt gemeinsam haben, so sind g und h identisch.
Satz I.3: (Existenz von drei Geraden)
- Es existieren mindestens drei paarweise verschiedene Geraden.
Satz I.4: (Minimales Modell für die Inzidenzaxiome der ebenen Geometrie)
- Jedes Modell für die ebenen Inzidenzaxiome besteht aus wenigstens 3 Punkten und 3 Geraden.
Satz I.5:
- Zwei voneinander verschiedene Ebenen haben entweder keinen Punkt oder eine Gerade gemeinsam, auf der alle gemeinsamen Punkte beider Ebenen liegen.
Satz I.6:
- Eine Ebene und eine nicht in ihr liegende Gerade haben höchstens einen Punkt gemeinsam.
Satz I.7:
- Jede Ebene enthält (wenigstens) drei Punkte.
Satz II.1:
- Aus
folgt
.
Satz II.2:
- Aus
folgt
.
Satz II.3:
- Es sei
mit
sind paarweise verschieden.
Dann giltoder
oder
.
Satz II.4:
- Es sei
ein Punkt einer Geraden
.
Die Teilmengen,
und
bilden eine Klasseneinteilung der Geraden
.
Satz III.1: (Existenz und Eindeutigkeit des Mittelpunkte einer Strecke)
- Jede Strecke hat genau einen Mittelpunkt.
Satz IV.1: (Repräsentantenunabhängigkeit)
- Wenn
ein Punkt der Halbebene
ist, dann gilt
und
.
Satz IV.2:
- Halbebenen sind konvexe Punktmengen
Satz IV.3:
- Der Durchschnitt zweier konvexer Punktmengen ist konvex.
Satz V.1:
- Das Innere eines Winkels ist konvex.
Satz V.2:
- Wenn der Punkt
im Inneren des Winkels
und nicht auf einem der Schenkel des Winkels
liegt, dann ist die Größe der beiden Teilwinkel
und
jeweils kleiner als die Größe des Winkels
.
Satz V.3: (Existenz von rechten Winkeln)
- Es gibt rechte Winkel.
Satz V.4:
- Jeder rechte Winkel hat das Maß 90.
Satz V.5: ( Existenz und Eindeutigkeit der Senkrechten in einem Punkt)
- Gegeben seien ein Punkt P auf einer Geraden g in einer Ebene E. Es gibt in E genau eine Gerade, die durch P geht und senkrecht auf g steht.
oder
- Es sei
eine Gerade der Ebene
. Ferner sei
ein Punkt auf
. In der Ebene
gibt es genau eine Gerade
, die durch
geht und senkrecht auf
steht.
Satz VI.1: (Existenz und Eindeutigkeit der Mittelsenkrechten)
- Jede Strecke hat in jeder Ebene, zu der die Strecke vollständig gehört, genau eine Mittelsenkrechte.
Satz VI.
:
- Es sei
die Winkelhalbierende des Winkels
. Dann gilt
.
- Es sei
Satz VI.2: (Existenz und Eindeutigkeit der Winkelhalbierenden)
- Zu jedem Winkel gibt es genau eine Winkelhalbierende.
Satz VII.1:
- Die Relation kongruent ist auf der Menge aller Strecken eine Äquivalenzrelation.
Satz VII.2:
- Die Relation kongruent ist auf der Menge aller Winkel eine Äquivalenzrelation.
Satz VII.3:
- Die Relation kongruent ist auf der Menge aller Dreiecke eine Äquivalenzrelation.
Satz VII.4: (Kongruenzsatz WSW)
- Wenn für zwei Dreiecke
und
die folgenden 3 Kongruenzen
- Wenn für zwei Dreiecke
- gelten,
- dann sind die beiden Dreiecke
und
kongruent zueinander.
Satz VII.5: (Basiswinkelsatz)
- In jedem gleichschenkligen Dreieck sind die Basiswinkel kongruent zueinander.
Lemma 1:
- Die Winkelhalbierende
eines Winkels
schneidet die Strecke
in genau einem Punkt
.
- Die Winkelhalbierende
Satz VII.6: (Mittelsenkrechtenkriterium)
- Eine Menge
von Punkten ist genau dann die Mittelsenkrechte einer Strecke
, wenn für jeden Punkt
gilt:
.
- Eine Menge
Satz VII.6 a: (hinreichende Bedingung dafür, dass ein Punkt zur Mittelsenkrechten von
gehört.)
- Wenn ein Punkt
zu den Endpunkten der Strecke
jeweils ein und denselben Abstand hat, so ist er ein Punkt der Mittelsenkrechten von
.
- Wenn ein Punkt
Satz VII.6 b: (notwendige Bedingung dafür, dass ein Punkt zur Mittelsenkrechten von
gehört)
- Wenn ein Punkt
zur Mittelsenkrechten der Strecke
gehört, dann hat er zu den Punkten
und
ein und denselben Abstand.
- Wenn ein Punkt
Satz VIII.1: (schwacher Außenwinkelsatz)
- Die Größe eines jeden Außenwinkels eines Dreiecks ist jeweils größer als die Größe eines jeden Innenwinkels dieses Dreiecks, der kein Nebenwinkel zu dem gewählten Außenwinkel des Dreiecks ist.
Lemma 2:
- Wenn ein Punkt
im Inneren des Winkels
liegt, dann liegt der gesamte Strahl
im Inneren des Winkels
.
- Wenn ein Punkt
Satz IX.1: (Existenz und Eindeutigkeit des Lotes)
Zu jedem Punkt P außerhalb einer Geraden g gibt es genau ein Lot von P auf g. ---mogli- 15:26, 17. Jul. 2010 (UTC)