Lösung von Testaufgabe 2.6 SS12: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
Zeile 6: Zeile 6:
  
 
1. AC senkrecht auf BD                                / Vor.<br />
 
1. AC senkrecht auf BD                                / Vor.<br />
2. < DMC, <BMC, <AMB und <AMD = 90                    / def. senkrecht, def. rechter Winkel<br />
+
2. < DMC = <BMC, = <AMB = <AMD                         / def. senkrecht <br />
 
3. DM = MB                                            / Vor.<br />
 
3. DM = MB                                            / Vor.<br />
 
4. CM = CM                                            / trivial<br />
 
4. CM = CM                                            / trivial<br />

Version vom 14. Juli 2012, 17:59 Uhr

Ein Viereck bei dessen Diagonalen senkrecht aufeinander stehen und eine davon halbiert wird, ist ein Drachenviereck.

Vor.: Viereck ABCD, AC senkrecht auf BD und DM = MB

Beh.: AD + BC = AB + DC

1. AC senkrecht auf BD / Vor.
2. < DMC = <BMC, = <AMB = <AMD / def. senkrecht
3. DM = MB / Vor.
4. CM = CM / trivial
5. Dreieck DMC = Dreieck BMC / 2. 3. 4. SWS
6. AM = AM / trivial
7. Dreieck AMD = Dreieck AMB / 2. 3. 6. SWS
8. DM = AB / 7.
9. DC = BC / 5.
10. AD + BC = AB + DC / 8. 9.
11. Jeder Drachen ist ein Tangentenviereck q.e.d / 10.