Serie 11 SoSe 2013: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Aufgabe 11.04)
(Aufgabe 10.05)
Zeile 22: Zeile 22:
  
 
==Aufgabe 10.05 ==
 
==Aufgabe 10.05 ==
 
+
Beweisen Sie: Jedes Dreieck hat genau einen Umkreis.<br />
 
[[Lösung von Aufg. 11.05_SoSe_13]]
 
[[Lösung von Aufg. 11.05_SoSe_13]]
  

Version vom 7. Juli 2013, 16:31 Uhr

Inhaltsverzeichnis

Aufgabe 11.01

Im Folgenden beziehen wir uns auf die Beweisführung zum schwachen Außenwinkelsatz in der Vorlesung vom letzten Freitag (5. Juli). Beweisen Sie, dass der Punkt P in der offenen Halbebene BC,A^+ liegt.
Lösung von Aufgabe 11.01_SoSe_13

Aufgabe 11.02

Es sei bereits bewiesen, dass der größeren Seite eines Dreiecks auch der größere Winkel gegenüber liegt. Beweisen Sie die Umkehrung dieses Satzes. Lösung von Aufg. 11.02_SoSe_13

Aufgabe 11.03

Beweisen Sie die Existenz und die Eindeutigkeit des Lotes von einem Punkt auf eine Gerade.
Lösung von Aufg. 11.03_SoSe_13

Aufgabe 11.04

Definieren Sie den Begriff Umkreis eines Dreiecks.

Lösung von Aufg. 11.04_SoSe_13

Aufgabe 10.05

Beweisen Sie: Jedes Dreieck hat genau einen Umkreis.
Lösung von Aufg. 11.05_SoSe_13

Aufgabe 11.06

Lösung von Aufg. 11.06_SoSe_13

Aufgabe 11.07

Lösung von Aufg. 11.07_SoSe_13

Aufgabe 11.08

Lösung von Aufgabe 11.08_SoSe_13

Aufgabe 11.09

Lösung von Aufgabe 11.09_SoSe_13

Aufgabe 11.10

Lösung von Aufgabe 11.10_SoSe_13