Der Basiswinkelsatz: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Für die Schule ok. hier jedoch nicht zugelassen)
(Für die Schule ok. hier jedoch nicht zugelassen)
Zeile 17: Zeile 17:
  
 
[[Bild:Basiswinkelsatz01.png| 300 px]]
 
[[Bild:Basiswinkelsatz01.png| 300 px]]
 +
 +
Wir werden jetzt zeigen, dass die beiden Teildreiecke <math>\overline{AMC}</math> und <math>\overline{BMC}</math> kongruent zueinander sind:
 +
 +
 +
[[Bild:Basiswinkelsatz02.png| 300 px]]

Version vom 1. Juli 2010, 21:31 Uhr

Inhaltsverzeichnis

Der Basiswinkelsatz

Gleichschenklige Dreiecke

Definition VII.4 : (gleichschenkliges Dreieck)

Das können sie selbst. Bringen Sie in der Definition die Begriffe Basis, Basiswinkel und Schenkel eines gleichschenkligen Dreiecks unter.

Übung 11 Aufgabe 1

Der Basiswinkelsatz

Satz VII.5: Basiswinkelsatz
In jedem gleichschenkligen Dreieck sind die Basiswinkel kongruent zueinander.
Für die Schule ok. hier jedoch nicht zugelassen

Es sei \overline{ABC} ein Dreieck mit den schulüblichen Bezeichnungen. o.B.d.A. seien die Seiten \ a und \ b kongruent zueinander:

Basiswinkelsatz00.png

Nach der Existenz und Eindeutigkeit des Mittelpunktes einer Strecke existiert der Mittelpunkt \ M der Dreiecksseite \ c.

Basiswinkelsatz01.png

Wir werden jetzt zeigen, dass die beiden Teildreiecke \overline{AMC} und \overline{BMC} kongruent zueinander sind:


Basiswinkelsatz02.png