Auftrag der Woche 4 (WS 16 17): Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Konstruktionsbeschreibung und zweite Lösungsmöglichkeit hinzugefügt, Diskussion auf Diskussionsseite verschoben)
Zeile 4: Zeile 4:
  
 
<br><hr><br>
 
<br><hr><br>
 +
 +
[{{fullurl:Auftrag der Woche 4 (WS 16 17)|action=purge}} Seite neu laden, falls GeoGebra nicht lädt]
 +
 +
===Lösung von AlanTu===
 
Wenn man den Haken bei „Spur“ setzt, erscheint nach und nach die Mittelsenkrechte.
 
Wenn man den Haken bei „Spur“ setzt, erscheint nach und nach die Mittelsenkrechte.
 
<ggb_applet width="1000" height="900"  version="4.0" ggbBase64="UEsDBBQACAgIAOVVcEkAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICADlVXBJAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1aW2/juBV+nv0VhJ5aILZFUjcPnFk4Ayw6aGamRdJi24cuaIm2udatFOXYwf74HpKSLMW5OpntPkwQhxJ5dC7fufBQzuzHXZaiLZeVKPJzB49dB/E8LhKRr86dWi1HkfPjhx9mK16s+EIytCxkxtS542lKkZw7JPJiP0rwKCRRNPKmMR4teIRHLl+6bkxYNOWxg9CuEu/z4gvLeFWymF/Fa56xyyJmygheK1W+n0xubm7GrahxIVeT1Wox3lWJg0DNvDp3mov3wG7w0A015MR18eTnz5eW/UjklWJ5zB2kTajFhx/ezW5EnhQ36EYkan3uRCRw0JqL1RpsioLIQRNNVAIgJY+V2PIKHu3dGptVVjqGjOV6/Z29QmlnjoMSsRUJl+eOO8bTyPdCgn1vGtAgcqmDCil4rhpi3AidtOxmW8FvLF99ZUR6DlJFkS6YZol++w0Rl7joTA/YDgSGILBLrp1zqR2IHTw7+JbGs497ltSzNJ6l8UDHrajEIuXnzpKlFUAo8qUE93X3ldqn3OjTTBzMx2dgUyVugZi6ECcWc5h33TP9CeDj6YXJ0Ejck6pk/UKhrcjAJz2RPjnzaXSGMQ7PppQcySSvkUlbmTjwjs0k/gNmBo+ga3V4jp3Y70ELosyv+RxJpOQFEu396wRqOH4HE2eTNlVmTXagaq1pG08qnlU6X+gU+VMd9hj5kBtBCFHuIzyFISQIsgFhH3k+3OIIBXoMEQ1hwUMURUjTYYpMcvgR/PFCwyxAPjDTsyHkJMIgyEM+RdjklIcgk5DJS8hRQoHC95EPD2nxmGgWNEBeAHc0Qh7oqFMyxEBI4UG4B/EEUYyofhiHiAQo0Pywp1M9iLTqwJKgwEUB1gwhqyGjbTYDfYSotiZo4BJ5WasBRHGWtJeqKDtfADXUo0PZs/VpUBXfzVK24ClsFFfakwhtWaozwghaFrlCrROJnVtJVq5FXF1xpeCpCv3KtuySKb77CairVrahjYu8+pss1McirbO8QiguUrfTuUhx75p0WsMN7S14/QW/txD0rsN75RawguqKg/xCVi05S5JPmuJQGgDJr3m6v5CcbcpCDM2YTcyeM+N1nIpEsPyfEKxaisYFtVuQKVftFhR6tFWkkMnVvoIIRrt/c1lApaLR2J0SGoaRT3EQ6t1qb5c8PxiTaRAFQeAHoetOQbWY6dzz/HHgkQiqPg4wFEKQte8t+X4UhCENpzQIsZXMt52D2I4fbF1Jndi9m0/VRZEepoz5H1mpammaB6iNUhs1z1cpNyFiii3szPFmUeyubGxQy+t6X8KdazVYrAzsCEoD8X0gaMaFHQ2NVq2jcg2NayjcNthE0q3jKTEUZlzY0VBB9FrVGlNxayZ2WzGiMgXNdZq0aYuVjn290de5UJftjRLxpjEV2we+1NmCdxE05InfjqfWGnqOSv3cNHH6+l+96+s1V0x3Iz6h/jQKQx/+kmkU2UC9E6KzDZc5T5uMgGCoi7qyCd5LloTHIoNbu9BAyrS7/wEG2NmEryRvDU9NY2cBN6tuP9iPpg2rn2SRfcq31xBLRwpAdychvkAJvW/Y5RaT2aS1YVbFUpQ6otEC9pgNP8QsIMNgi0r6SasTHJjEhqUSSgP/Vzu3MXOfhVIcqPON5PFa6bpQq3UBcTZPWX5dA1soauA6024WclOtOVfXfKcQWxTbp9mB43VUGG14yjNoFZEyCWJyrAuUuZGgIwIVi1+hMHd7t10/hAcs35ssJq1YWq5NaDSwp2zP5cARht/nIrnrnhZ4qFKl6XQhPkvObWhbjeGiBIamIgzqLHi8QjsrFu1BFT3e2oi1Pbi2VVeJwcZiZ++ECsSvhekJwC7+WICdApfXwOW+EVxxkWUsT1BuOrNLqIcXogJkCukcGgbm6mBDDGsILT61ahcyy7JhdOQBXWI7gLNjBwxrX8/mh1zgnu6AA4wj707YBR2vbktQ0Kxs4ERWmX1LNTuUufiLSBJuGlW7Zf43t49Utk6LrExFLNTjsZnXGZci7my3iIO+daM1HvvBtKl0J8UsHOSOIMPPhKyhq1J9jEWZMG8HIPgzttOMgeOiguZMwVEeCnx+OMpb7ZrmBo4/GmD9CG4Qpwb6pdjxrvOE4iluYZ9hA3tO8cRxTYKzcJdm8j9/In9GE2iSe1y6fDvsHA+lx0ch45TfnxjyKDHixxMD9pme8+MnStMDiQEtne1s9LhoxlPT46TQFyueb03BgC595zYtx95tS1Q7swOMRrbY42bqFvfqF7hNih2at/TzlmpOTORB60qnbvsDcT2njYi513KeQ5M/Ii3Hu1mpzy5iKeITfHzxkI+Tl/g4+e7jx3xMGyffda3XudZ9nWs/5QraZrDjjndj690EBtL1sT0n//0X/Libh12GJj+lZvvYutklr281DjvdF/bFlF0z3trx7RqG50GK74GUvAxSchKk7fGxxdSMf3RMr/hKz9+/zTTADcCUT8Vn1XDsOo0TI/ThruK5UNJnQ/nWfZhBLNU7fRez0CYcH2o3nJf6bcTX/FqyvNLfdwwPlqA9Kw/nTXmKM7UXH2in5VOZcezM03LjuzPfyJkXbWYelzn5i/dSZ3rfnfn/zUxs3Tm/x5n0pc6k3535rZzJd6UEZTXBoe+6KmvpIFhqHDnoJZ56ndY+/+wmHbr7RNjDpv4eoKFm37azU5LF/AiqBx396tdp98BMBjCTF8NMvhHMb9rt/d44DxBbFEXKWd6hwe6+Guq/BH/F68zn15avy2XFlX2RYwz3yWPoDXLXuPuOvZP+a3bzVVnzbx8f/gdQSwcIgJS+GDIIAACTIgAAUEsBAhQAFAAICAgA5VVwSUXM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgICADlVXBJgJS+GDIIAACTIgAADAAAAAAAAAAAAAAAAABeAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAAMoIAAAAAA==" showResetIcon = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
 
<ggb_applet width="1000" height="900"  version="4.0" ggbBase64="UEsDBBQACAgIAOVVcEkAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICADlVXBJAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1aW2/juBV+nv0VhJ5aILZFUjcPnFk4Ayw6aGamRdJi24cuaIm2udatFOXYwf74HpKSLMW5OpntPkwQhxJ5dC7fufBQzuzHXZaiLZeVKPJzB49dB/E8LhKRr86dWi1HkfPjhx9mK16s+EIytCxkxtS542lKkZw7JPJiP0rwKCRRNPKmMR4teIRHLl+6bkxYNOWxg9CuEu/z4gvLeFWymF/Fa56xyyJmygheK1W+n0xubm7GrahxIVeT1Wox3lWJg0DNvDp3mov3wG7w0A015MR18eTnz5eW/UjklWJ5zB2kTajFhx/ezW5EnhQ36EYkan3uRCRw0JqL1RpsioLIQRNNVAIgJY+V2PIKHu3dGptVVjqGjOV6/Z29QmlnjoMSsRUJl+eOO8bTyPdCgn1vGtAgcqmDCil4rhpi3AidtOxmW8FvLF99ZUR6DlJFkS6YZol++w0Rl7joTA/YDgSGILBLrp1zqR2IHTw7+JbGs497ltSzNJ6l8UDHrajEIuXnzpKlFUAo8qUE93X3ldqn3OjTTBzMx2dgUyVugZi6ECcWc5h33TP9CeDj6YXJ0Ejck6pk/UKhrcjAJz2RPjnzaXSGMQ7PppQcySSvkUlbmTjwjs0k/gNmBo+ga3V4jp3Y70ELosyv+RxJpOQFEu396wRqOH4HE2eTNlVmTXagaq1pG08qnlU6X+gU+VMd9hj5kBtBCFHuIzyFISQIsgFhH3k+3OIIBXoMEQ1hwUMURUjTYYpMcvgR/PFCwyxAPjDTsyHkJMIgyEM+RdjklIcgk5DJS8hRQoHC95EPD2nxmGgWNEBeAHc0Qh7oqFMyxEBI4UG4B/EEUYyofhiHiAQo0Pywp1M9iLTqwJKgwEUB1gwhqyGjbTYDfYSotiZo4BJ5WasBRHGWtJeqKDtfADXUo0PZs/VpUBXfzVK24ClsFFfakwhtWaozwghaFrlCrROJnVtJVq5FXF1xpeCpCv3KtuySKb77CairVrahjYu8+pss1McirbO8QiguUrfTuUhx75p0WsMN7S14/QW/txD0rsN75RawguqKg/xCVi05S5JPmuJQGgDJr3m6v5CcbcpCDM2YTcyeM+N1nIpEsPyfEKxaisYFtVuQKVftFhR6tFWkkMnVvoIIRrt/c1lApaLR2J0SGoaRT3EQ6t1qb5c8PxiTaRAFQeAHoetOQbWY6dzz/HHgkQiqPg4wFEKQte8t+X4UhCENpzQIsZXMt52D2I4fbF1Jndi9m0/VRZEepoz5H1mpammaB6iNUhs1z1cpNyFiii3szPFmUeyubGxQy+t6X8KdazVYrAzsCEoD8X0gaMaFHQ2NVq2jcg2NayjcNthE0q3jKTEUZlzY0VBB9FrVGlNxayZ2WzGiMgXNdZq0aYuVjn290de5UJftjRLxpjEV2we+1NmCdxE05InfjqfWGnqOSv3cNHH6+l+96+s1V0x3Iz6h/jQKQx/+kmkU2UC9E6KzDZc5T5uMgGCoi7qyCd5LloTHIoNbu9BAyrS7/wEG2NmEryRvDU9NY2cBN6tuP9iPpg2rn2SRfcq31xBLRwpAdychvkAJvW/Y5RaT2aS1YVbFUpQ6otEC9pgNP8QsIMNgi0r6SasTHJjEhqUSSgP/Vzu3MXOfhVIcqPON5PFa6bpQq3UBcTZPWX5dA1soauA6024WclOtOVfXfKcQWxTbp9mB43VUGG14yjNoFZEyCWJyrAuUuZGgIwIVi1+hMHd7t10/hAcs35ssJq1YWq5NaDSwp2zP5cARht/nIrnrnhZ4qFKl6XQhPkvObWhbjeGiBIamIgzqLHi8QjsrFu1BFT3e2oi1Pbi2VVeJwcZiZ++ECsSvhekJwC7+WICdApfXwOW+EVxxkWUsT1BuOrNLqIcXogJkCukcGgbm6mBDDGsILT61ahcyy7JhdOQBXWI7gLNjBwxrX8/mh1zgnu6AA4wj707YBR2vbktQ0Kxs4ERWmX1LNTuUufiLSBJuGlW7Zf43t49Utk6LrExFLNTjsZnXGZci7my3iIO+daM1HvvBtKl0J8UsHOSOIMPPhKyhq1J9jEWZMG8HIPgzttOMgeOiguZMwVEeCnx+OMpb7ZrmBo4/GmD9CG4Qpwb6pdjxrvOE4iluYZ9hA3tO8cRxTYKzcJdm8j9/In9GE2iSe1y6fDvsHA+lx0ch45TfnxjyKDHixxMD9pme8+MnStMDiQEtne1s9LhoxlPT46TQFyueb03BgC595zYtx95tS1Q7swOMRrbY42bqFvfqF7hNih2at/TzlmpOTORB60qnbvsDcT2njYi513KeQ5M/Ii3Hu1mpzy5iKeITfHzxkI+Tl/g4+e7jx3xMGyffda3XudZ9nWs/5QraZrDjjndj690EBtL1sT0n//0X/Libh12GJj+lZvvYutklr281DjvdF/bFlF0z3trx7RqG50GK74GUvAxSchKk7fGxxdSMf3RMr/hKz9+/zTTADcCUT8Vn1XDsOo0TI/ThruK5UNJnQ/nWfZhBLNU7fRez0CYcH2o3nJf6bcTX/FqyvNLfdwwPlqA9Kw/nTXmKM7UXH2in5VOZcezM03LjuzPfyJkXbWYelzn5i/dSZ3rfnfn/zUxs3Tm/x5n0pc6k3535rZzJd6UEZTXBoe+6KmvpIFhqHDnoJZ56ndY+/+wmHbr7RNjDpv4eoKFm37azU5LF/AiqBx396tdp98BMBjCTF8NMvhHMb9rt/d44DxBbFEXKWd6hwe6+Guq/BH/F68zn15avy2XFlX2RYwz3yWPoDXLXuPuOvZP+a3bzVVnzbx8f/gdQSwcIgJS+GDIIAACTIgAAUEsBAhQAFAAICAgA5VVwSUXM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgICADlVXBJgJS+GDIIAACTIgAADAAAAAAAAAAAAAAAAABeAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAAMoIAAAAAA==" showResetIcon = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
--[[Benutzer:AlanTu|AlanTu]] ([[Benutzer Diskussion:AlanTu|Diskussion]]) 10:50, 16. Nov. 2016 (CET)
 
  
Hallo AlanTu,<br />
+
 
ich finde es toll, dass du eine GeoGebra Datei hochgeladen hast.
+
====Konstruktionsbeschreibung====
Sie zeigt durch den Schieberegler und der Spur anschaulich, dass die Mittelsenkrechte eine Punktmenge mit der
+
Gegeben seien zwei Punkte <math>A</math> und <math>B</math>. Gesucht ist <math>M:=\{Q|\overline{AQ}\cong\overline{QB}\}</math>.
oben genannten Eigenschaft ist. Leider bewegen sich aber 2 Punkte in deiner Datei auf der Mittelsenkrechten.
+
 
Du hast sie konstruiert als Schnittpunkte der Kreise um A und B. <br />
+
Sei <math>r\in\mathbb{R}</math> fest aber beliebig.
Anbei habe ich eine GeoGebra Datei erstellt. Überlege, wie habe ich das ''Problem'' gelöst?<br />
+
# Zeichne einen Kreis <math>c_r</math> mit Radius <math>r</math> um <math>A</math> (die Menge der Punkte mit Abstand <math>r</math> von <math>A</math>).
Gruß Alex--[[Benutzer:Tutor: Alex|Tutor: Alex]] ([[Benutzer Diskussion:Tutor: Alex|Diskussion]]) 23:46, 16. Nov. 2016 (CET)
+
# Zeichne einen Kreis <math>d_r</math> mit Radius <math>r</math> um <math>B</math> (die Menge der Punkte mit Abstand <math>r</math> von <math>B</math>).
Nachtrag: Falls die GeoGebra Datei hier nicht angezeigt wird, [https://ggbm.at/uFGVcdT3 klicke hier].
+
# Bestimme <math>M_r</math> (die Menge der Punkte mit Abstand <math>r</math> sowohl von <math>A</math> als auch von <math>B</math>) folgendermaßen:
 +
## Falls kein Schnittpunkt von <math>c</math> und <math>d</math>: Es sei <math>M_r=\{\}</math>.
 +
## Falls ein Schnittpunkt von <math>c</math> und <math>d</math>: Nenne den Schnittpunkt <math>Q</math>, es sei <math>M_r=\{Q\}</math>.
 +
## Falls zwei Schnittpunkte von <math>c</math> und <math>d</math>: Nenne die beiden Schnittpunkte <math>Q_r^1</math> und <math>Q_r^2</math>, es sei <math>M_r=\{Q_r^1,Q_r^2\}</math>.
 +
 
 +
<math>M</math> ergibt sich nun aus der Vereinigung aller <math>M_r</math> für <math>r\in\mathbb{R}</math>, also: <math>M = \bigcup\limits_{r\in\mathbb{R}}{M_r}</math>
 +
 
 +
====Begründung, warum die Menge genau die Mittelsenkrechte ist====
 +
 
 +
Betrachtet man nun <math>r=\frac{\overline{AB}}{2}</math>: <math>Q</math> ist der Mittelpunkt von <math>A</math> und <math>B</math>, da er den selben Abstand von beiden Punkten hat.
 +
 
 +
Betrachtet man nun <math>r\in\mathbb{R} \wedge r > \overline{QA}</math>:
 +
* Das Viereck <math>AQ_r^1BQ_r^2</math> bildet eine Raute mit Seitenlänge <math>r</math>.
 +
* Da die Diagonalen der Raute sich sowohl halbieren, als auch senkrecht aufeinander stehen, liegen <math>Q_r^1</math> und <math>Q_r^2</math> auf der Mittelsenkrechten von <math>A</math> und <math>B</math>.
 +
* Nach dem Satz des Pythagoras ergibt sich <math>\overline{QQ_r^1} = \overline{QQ_r^2} = \sqrt{r^2 - \overline{QA}^2}</math> und da <math>f(r)=\sqrt{r^2 - \overline{QA}^2}</math> für <math>r > \overline{QA}</math> genau einen Wertebereich von <math>(0,\infty)</math> besitzt, ergibt die Vereinigung aller <math>M_r</math> genau die Mittelsenkrechte von <math>A</math> und <math>B</math> ohne den Mittelpunkt von <math>A</math> und <math>B</math>.
 +
 
 +
Nimmt man also beide Fälle zusammen ergibt sich genau die komplette Mittelsenkrechte von <math>A</math> und <math>B</math>.
 +
 
 +
 
 +
===Lösung von Tutor Alex===
 
<ggb_applet id="NhGHgeYj" width="1890" height="880" border="000000" />
 
<ggb_applet id="NhGHgeYj" width="1890" height="880" border="000000" />
 +
Nachtrag: Falls die GeoGebra Datei hier nicht angezeigt wird, [https://ggbm.at/uFGVcdT3 klicke hier].
 +
 +
 +
===2. Lösung von AlanTu===
 +
<ggb_applet width="900" height="900"  version="4.0" ggbBase64="UEsDBBQACAgIAHNacUkAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIAHNacUkAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7VrrbttGFv6dPsVAP4rdwpLmTjKVUzgFig2QNk2cLbq7WARDciSzpkiGpGwp275Tk0foA+SZemaGpCjJ8i12NrsIYJsczpnLuXzfOUN68s1ynqIzXVZJnh0OyAgPkM6iPE6y2eFgUU+H/uCbR19MZjqf6bBUaJqXc1UfDriRTOLDQeCHOvJFNNRx5A25lMHQDzAdChoxjZk3DTgdILSskodZ/oOa66pQkT6OTvRcPc0jVduFT+q6eDgen5+fj9qlRnk5G89m4WhZxQME28yqw0Fz8xCm2xh0zqw4xZiMf/7+qZt+mGRVrbJID5BRYZE8+uLB5DzJ4vwcnSdxfQIKEwy7O9HJ7ASU8kxjbKQKsEihozo50xWM7TWt0vW8GFgxlZn+B+4OpZ0+AxQnZ0msy8MBHpEAC0klYZxhQj3MBygvE53VjTBpFh23003OEn3u5jV3dkkYVOd5GiozJfr1V0QxxejAXIi7ULhI6bqwe4aZu1B34e4inAx3w7kT5U6GOxnOBugsqZIw1YeDqUorsGGSTUvwX9eu6lWq7X6aB2v1yQHoVCVvQJgGECjO6PAc4wPzK+GXY+z07ilJeqvW5eKGi7ZL+j69/pL0Q5ZknZbkAi2p2KOlvMS4bg/XUZOI3pqwlP2xvzsrMnoTd7otXLAil2y9IqP8gPviQIrgQFBvZ03JP4qWk3ELlkmDD1SdGNnGmbWeVwYxLEAiMIFPkAB0SA/iXCASwMWjCPCAiEBcQJP4SJqrh5gHHRwx5CMjRxiy8BA+/OGenUwiAZOZpx6gEhFYiCPBELGo4giwhCwyAaWUgYQQSMAgszyhZgomEZfQYj7isEcDSo+AIIOB0IblKWIEMTOYeIhKJM18hBuwS99sHaakSGIkiZkQcA2YdngGeR8xo41szJVkxaLeMFE0j9vbOi86X4A0MNKa+BxDbfDig0mqQp1Crjg2nkToTKUGFHahaZ7VqHUidc9mpSpOkqg61nUNoyr0izpTT1Wtl9+BdNWubWWjPKt+LPP62zxdzLMKoShPcbfnPCW9e9q7Z7173mkDDdHrkP0Or+nYWDaHDrSoNCyfl1U7VMXxEyPRRTDY8VmWrh6XWp0WebKpxGRsk85EL6I0iROV/QShahYxVkFtDrJ01aYg4XntPvIyPl5VEL9o+U9d5iZZQX6WnieIZJ5PuADQrVyXpN6IBgGjRPqe5D7sLFIGeAEZcRkElFHKiM89AOVqT5dwC+uzzjtqqTt10Kw0qO41nlSP83T9yGr/rSrqRWmLB6CK0uh0lM1SbePDki1k5ug0zJfHLjCYm+vlqoAWdjsIZ9boCHiBCgECzTV0VytjttZJYSuDrQRuIy2Ju34SUCthr6G7WikIXbe1RlXSqklwu0xSWTbDgwYzLVOZwDd5fpEl9dO2USfRaaMqcQN+WMxD3cXP5pzk7uY0u4aSo6p/boo4c/+P3v3LE10rU4wIykTgQxDBXxr4vovTrQidnOoy02mDBwiGRb6oHLp7CI11lMyh6Toakyrj7r+DAu5prGelbhVPbWHnDG57cT/Wdx7bqb4r8/mT7OwlxNLOBqC6KyG+YBMmabju1iaTcavDpIrKpDARjUJIMKd6HbNgGQX5Ke5j1sAbJonslHVSG8MD8Bf1SQ6hdJSq7OUCRgJpwXMD7lTPoZZDtQ1hi4LOlUe2SjQ+Q3n4C/Bml1xd/9qB0H1hONvAV2lxYp3XGCZVK11umMrO930ebxuwNQ3QSGFLUYigQmsXfG7HcFPAhBazG/QLPqnQsomhFWzFXN+4tiuSja4Gxxu8755uORMizJnpCoM9/rQMdhtz8cZc5I7MFeXzucpilNnC6VjPzPPBOpUrbOIMKWKs50yzqNuO0M3WzLFj/KqZrTVveIX5ewrvsz++vfV3Q441Nhx63VwdY9dQSJzCeamyaaVuEoi9+VsSx9oWkS6jvc7ckMrRaDIv0iRK6s5aqXHnk6wGUtUW97tcd6p1YZLUs+xlqbLKHIO3+WZfhFsa60z4/q21MYxdNNrTEYOcTeAgJj3qU94ERpWa8yOaJ6AI/uqP3wdoroxpfNdQYQWFUQ0naeDXbH2Sdv5qSguGjROMRalsTMqtTafJskeDwGzJG+B5tYGw26GQ4N04INeMA3J7H6sy6kFrP/9Z2zWYxiOKhggeoq+gTs3+8v7tXy9C+VrbsKvy9vt+E64vcjjk6y20PnZohUhAihrwbqP28ZeqyKuvL8fuFnE2Q3Yct1lb3DN/rhE8hEoDQ6kBlYZkTAhujoMm/EaeTyUOAi4o9jjUIfdAkrbkvNjoR87mPQtvWP7921fkcrNvoxnkr4nnO4OTKelWoGkSObGmYVw4YkHXDvudMPDJ9F/v36Iv0/prFOA/fj+AyKfw59/2DJSXx+a9XM+/HxuraZqfv9DTVC+t+zYRBiQ+B+3NuelFd6jYIun98fAUNrknY+6JA3V5EBitO/epTyRpDukF2ALIDckFUATMCRD3GPV4AFdfePeTYG/IjY1fhi057pY0Rzcnx6NPjBzlyPfg+G6OX3AUDShv6mtGOVCGDDCTXAr2saixNU9TQ+5JSkB19IbUSD9T4/1RY49W7pobN+NhOxCiG3Bj9F/lxn312uZRYxd1K0ummxhl0p1E6IhTjzLPA+qUAkaJj82b3UFly23KOSzacdjzm3Dl81udwE1KmblL6C736TMK8ARfUexjnwnIacz6DI8CQinkORIw84YUO5cFo8DH1BAOB87xiLxDOv0xT1ezPNt3HLdU+nzHIT8lMF90SpzYayemXpk2g0P4VSVo0SzauqSb7rZxeGN8EmNx8Lcgtz7rXfFaaPvNxOvbEcklG/38cuIiO6vmPPNJWBoAjX0RMA8wTSWQrt8WtIEMBCMU6Bn7Hpe+cwQZScl9bj6OBAHQA/f/b/wSfkp+MQ7Y4xjMMLgDDh8YuFiY785vDFI2/cXvKWfei1+urp+fb75a2K2c393wpcK73ZcKeOQJFvgU6hBfEiEwv37pHOVZnLjXYOZzZSNsCt5ZU/D+T7zMu9MXBJv2D/M81WqdUY+LRbntgf53pw/4PnF9AD6bTitd24zj4NV+Gr4qk17jxHdFgQIReLOz3rvds95WxPIg+ByxHxSxy6KErRijtKX6q/+YQP1tgKDP0tBGQT++qtJvh187r1zsFguW+3ttUpdw+L7kLHBByrFnAWhxLCkn1GOepITeyduUcf/zsP0Pj+bfFR/9CVBLBwhwZstJeQkAAEspAABQSwECFAAUAAgICABzWnFJ1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIAHNacUlwZstJeQkAAEspAAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAEAoAAAAA" showResetIcon = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "true" showToolBar = "true" showToolBarHelp = "false" showAlgebraInput = "true" useBrowserForJS = "false" allowRescaling = "true" />
  
 
[[Kategorie:Geo_P]]
 
[[Kategorie:Geo_P]]

Version vom 17. November 2016, 13:56 Uhr

[ www.ph-heidelberg.de is not an authorized iframe site ]

Die Lösung ist korrekt, die Skizze aus didaktischer Sicht suboptimal. Generieren Sie mit Geogebra eine dynamische Applikation, die die korrekte Lösung besser als die obige Skizze unterstützt.




Seite neu laden, falls GeoGebra nicht lädt

Inhaltsverzeichnis

Lösung von AlanTu

Wenn man den Haken bei „Spur“ setzt, erscheint nach und nach die Mittelsenkrechte.


Konstruktionsbeschreibung

Gegeben seien zwei Punkte A und B. Gesucht ist M:=\{Q|\overline{AQ}\cong\overline{QB}\}.

Sei r\in\mathbb{R} fest aber beliebig.

  1. Zeichne einen Kreis c_r mit Radius r um A (die Menge der Punkte mit Abstand r von A).
  2. Zeichne einen Kreis d_r mit Radius r um B (die Menge der Punkte mit Abstand r von B).
  3. Bestimme M_r (die Menge der Punkte mit Abstand r sowohl von A als auch von B) folgendermaßen:
    1. Falls kein Schnittpunkt von c und d: Es sei M_r=\{\}.
    2. Falls ein Schnittpunkt von c und d: Nenne den Schnittpunkt Q, es sei M_r=\{Q\}.
    3. Falls zwei Schnittpunkte von c und d: Nenne die beiden Schnittpunkte Q_r^1 und Q_r^2, es sei M_r=\{Q_r^1,Q_r^2\}.

M ergibt sich nun aus der Vereinigung aller M_r für r\in\mathbb{R}, also: M = \bigcup\limits_{r\in\mathbb{R}}{M_r}

Begründung, warum die Menge genau die Mittelsenkrechte ist

Betrachtet man nun r=\frac{\overline{AB}}{2}: Q ist der Mittelpunkt von A und B, da er den selben Abstand von beiden Punkten hat.

Betrachtet man nun r\in\mathbb{R} \wedge r > \overline{QA}:

  • Das Viereck AQ_r^1BQ_r^2 bildet eine Raute mit Seitenlänge r.
  • Da die Diagonalen der Raute sich sowohl halbieren, als auch senkrecht aufeinander stehen, liegen Q_r^1 und Q_r^2 auf der Mittelsenkrechten von A und B.
  • Nach dem Satz des Pythagoras ergibt sich \overline{QQ_r^1} = \overline{QQ_r^2} = \sqrt{r^2 - \overline{QA}^2} und da f(r)=\sqrt{r^2 - \overline{QA}^2} für r > \overline{QA} genau einen Wertebereich von (0,\infty) besitzt, ergibt die Vereinigung aller M_r genau die Mittelsenkrechte von A und B ohne den Mittelpunkt von A und B.

Nimmt man also beide Fälle zusammen ergibt sich genau die komplette Mittelsenkrechte von A und B.


Lösung von Tutor Alex

Nachtrag: Falls die GeoGebra Datei hier nicht angezeigt wird, klicke hier.


2. Lösung von AlanTu