Die Umkehrung des Stufenwinkelsatzes (SoSe 11): Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: „== Stufenwinkel, Wechselwinkel, entgegengesetzt liegende Winkel == In welchen Fällen handelt es sich um.... ::Stufenwinkel ::Wechselwinkel ::entgegengesetzt lie…“)
 
(Definition X.3: (entgegengesetzt liegende Winkel))
Zeile 18: Zeile 18:
 
===== Definition X.3: (entgegengesetzt liegende Winkel)=====
 
===== Definition X.3: (entgegengesetzt liegende Winkel)=====
 
(ergänzen Sie)
 
(ergänzen Sie)
 +
<br />Zwei Winkel <math>\angle p,q</math> und <math>\angle r,s</math> sind entgegengesetzt liegende Winkel, wenn der Stufenwinkel des Winkels <math>\angle p,q</math> und der Winkel Nebenwinkel sind. --[[Benutzer:Teufelchen|Teufelchen]] 20:39, 12. Jul. 2011 (CEST)<br />
  
 
== Die Umkehrung des Stufenwinkelsatzes ==
 
== Die Umkehrung des Stufenwinkelsatzes ==

Version vom 12. Juli 2011, 19:40 Uhr

Inhaltsverzeichnis

Stufenwinkel, Wechselwinkel, entgegengesetzt liegende Winkel

In welchen Fällen handelt es sich um....

Stufenwinkel
Wechselwinkel
entgegengesetzt liegende Winkel?

Definition X.1: (Stufenwinkel)

(ergänzen Sie)


Definition X.2: (Wechselwinkel)

(ergänzen Sie)


Definition X.3: (entgegengesetzt liegende Winkel)

(ergänzen Sie)
Zwei Winkel \angle p,q und \angle r,s sind entgegengesetzt liegende Winkel, wenn der Stufenwinkel des Winkels \angle p,q und der Winkel Nebenwinkel sind. --Teufelchen 20:39, 12. Jul. 2011 (CEST)

Die Umkehrung des Stufenwinkelsatzes

Satz X.1: (Umkehrung des Stufenwinkelsatzes)
Es seien \ a und \ b zwei nicht identische Geraden, die durch eine dritte Gerade \ c jeweils geschnitten werden. Es seien ferner \ \alpha und \ \beta zwei Stufenwinkel, die bei dem Schnitt von \ c mit \ a und \ b entstehen mögen.
Wenn die beiden Stufenwinkel \ \alpha und \ \beta kongruent zueinander sind, dann sind die Geraden \ a und \ b parallel zueinander.
Beweis von Satz X.1: (Umkehrung des Stufenwinkelsatzes)

Es seien \ a, b und \ c drei paarweise nicht identische Geraden. Die Gerade \ c möge \ a in dem Punkt \ A und die Gerade \ b in dem Punkt \ B schneiden. \ \alpha und \ \beta sei ein Paar von Stufenwinkeln, welches bei dem Schnitt von \ a und \ b mit \ c entstehen möge.

Voraussetzung:

(i) \ \alpha \cong \beta

Umkehrung stufenwinkelsatz 01.png

Behauptung:

\ a  \| b

Annahme:

a\not\| b

Den Rest können Sie selbst!