Fixpunkt, Fixpunktgerade, Fixgerade (2011/12): Unterschied zwischen den Versionen
*m.g.* (Diskussion | Beiträge) (→Definition 3.1: (Fixpunkt einer Abbildung \ \phi )) |
*m.g.* (Diskussion | Beiträge) (→Definition) |
||
Zeile 38: | Zeile 38: | ||
=== Definition === | === Definition === | ||
− | * Eine Gerade g, die bei | + | * Eine Gerade g, die bei der Abbildung <math>\phi</math> ... |
− | + | ||
− | + | ||
=== Richtig verstanden? === | === Richtig verstanden? === |
Version vom 8. November 2011, 09:55 Uhr
Inhaltsverzeichnis |
Fixpunkte
Beispiele/Gegenbeispiele
Definition des Begriffs Fixpunkt einer Abbildung
Definition 3.1: (Fixpunkt einer Abbildung )
- Ein Punkt heißt Fixpunkt einer Abbildung , wenn ... .
Richtig verstanden?
Fixgeraden
Beispiele/Gegenbeispiele
Definition
- Eine Gerade g, die bei der Abbildung ...
Richtig verstanden?
Fixpunktgeraden
Beispiele/Gegenbeispiele
Definition
- Eine Fixgerade f einer Abbildung , bei der (mindestens) zwei Punkt der Fixgeraden f bei der Abbildung auf sich selbst abgebildet werden, heißt Fixpunktgerade. --Tja??? 16:06, 2. Nov. 2010 (UTC)
- Wird jeder Punkt P einer Geraden g bei einer Bewegung б derart abgebildet, dass gilt: P = P` , dann ist die Gerade g eine Fixpunktgerade bei dieser Bewegung б.--Shaun15 21:35, 3. Nov. 2010 (UTC)
Richtig verstanden?
Ich glaube die Auflösungen von Aufgabe (a) und (d) sind nicht korrekt.
Wenn die Aussage (a) heißt "Manche Fixpunktgeraden einer Abbildung sind Fixgeraden derselben Abbildung.", dann impliziert das ja, dass es Fixpunktgeraden gibt, die nicht zugleich Fixgeraden sind. Jede Fixpunktgerade einer Abbildung ist aber zugleich Fixgerade. Daher müsste die Aussage falsch sein.
Ich denke, dass "manche" genauso wie "eine" nicht ausschließt, dass dies für mehrere bzw. alle Fixpunktgeraden gilt! Antwort--Tja??? 20:01, 4. Nov. 2010 (UTC):Weil es eben nicht ausschließt, denke ich dass die Aussage richtig ist.
Bei Aufgabe (d) wäre die Aussage nur richtig, wenn statt "Fixgerade" "FIxpunktgerade" stehen würde. Bei einer Fixgerade wird nur die Gerade auf sich selbst abgebildet, aber nicht unbedingt jeder Punkt der Geraden. --Steph85 - Das stimmt, ich hab's mal geändert!