Serie 05: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Aufgabe 5.1)
(Aufgabe 5.1)
Zeile 9: Zeile 9:
  
 
Die Mittelsenkrechte von <math>\overline{A'_1A'}</math> geht durch den Punkt <math>C'_1</math>.
 
Die Mittelsenkrechte von <math>\overline{A'_1A'}</math> geht durch den Punkt <math>C'_1</math>.
 +
 +
=Aufgabe 5.2=
 +
Das Bild aus Aufgabe 5.1 suggeriert, dass die Mittelsenkrechten von <math>\overline{B'_1B'}</math> und <math>\overline{A'_1A'}</math> identisch sind. Zeigen Sie, dass es Fälle gibt, in denen dieselben Voraussetzungen wie in Aufgabe 5.1 gelten, die genannten beiden Mittelsenkrechten jedoch nicht identisch sind.

Version vom 22. November 2011, 13:35 Uhr

Aufgabe 5.1

Reduktionssatz Schritt 01.png

Es sei Fehler beim Parsen(Syntaxfehler): \overline{A'B'C'_1

das Bild von \overline{ABC} bei einer Bewegung \varphi.

Fehler beim Parsen(Syntaxfehler): \overline{A'_1B'_1C'_1

sei das Bild von \overline{ABC} bei der Spiegelung an der Mittelsenkrechten von \overline{CC'_1}.

Beweisen Sie:

Die Mittelsenkrechte von \overline{B'_1B'} geht durch den Punkt C'_1.

Die Mittelsenkrechte von \overline{A'_1A'} geht durch den Punkt C'_1.

Aufgabe 5.2

Das Bild aus Aufgabe 5.1 suggeriert, dass die Mittelsenkrechten von \overline{B'_1B'} und \overline{A'_1A'} identisch sind. Zeigen Sie, dass es Fälle gibt, in denen dieselben Voraussetzungen wie in Aufgabe 5.1 gelten, die genannten beiden Mittelsenkrechten jedoch nicht identisch sind.