Serie 05: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Aufgabe 5.1)
(Aufgabe 5.2)
Zeile 11: Zeile 11:
  
 
=Aufgabe 5.2=
 
=Aufgabe 5.2=
Das Bild aus Aufgabe 5.1 suggeriert, dass die Mittelsenkrechten von <math>\overline{B'_1B'}</math> und <math>\overline{A'_1A'}</math> identisch sind. Zeigen Sie, dass es Fälle gibt, in denen dieselben Voraussetzungen wie in Aufgabe 5.1 gelten, die genannten beiden Mittelsenkrechten jedoch nicht identisch sind.
+
Das Bild aus Aufgabe 5.1 suggeriert, dass die Mittelsenkrechten von <math>\overline{B'_1B'}</math> und <math>\overline{A'_1A'}</math> identisch sind. Zeigen Sie mittels einer Skizze, dass es Fälle gibt, in denen dieselben Voraussetzungen wie in Aufgabe 5.1 gelten, die genannten beiden Mittelsenkrechten jedoch nicht identisch sind.
 +
=Aufgabe 5.3=

Version vom 22. November 2011, 13:40 Uhr

Aufgabe 5.1

Reduktionssatz Schritt 01.png

Es sei Fehler beim Parsen(Syntaxfehler): \overline{A'B'C'_1

das Bild von \overline{ABC} bei einer Bewegung \varphi.

Fehler beim Parsen(Syntaxfehler): \overline{A'_1B'_1C'_1

sei das Bild von \overline{ABC} bei der Spiegelung an der Mittelsenkrechten von \overline{CC'_1}.

Beweisen Sie:

Die Mittelsenkrechte von \overline{B'_1B'} geht durch den Punkt C'_1.

Die Mittelsenkrechte von \overline{A'_1A'} geht durch den Punkt C'_1.

Aufgabe 5.2

Das Bild aus Aufgabe 5.1 suggeriert, dass die Mittelsenkrechten von \overline{B'_1B'} und \overline{A'_1A'} identisch sind. Zeigen Sie mittels einer Skizze, dass es Fälle gibt, in denen dieselben Voraussetzungen wie in Aufgabe 5.1 gelten, die genannten beiden Mittelsenkrechten jedoch nicht identisch sind.

Aufgabe 5.3