Lösung von Aufgabe 4.5P (SoSe 12): Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
Zeile 2: Zeile 2:
 
a) Beschreiben Sie die Relation <math>\ \Theta</math> verbal und veranschaulichen Sie diese Relation.<br />
 
a) Beschreiben Sie die Relation <math>\ \Theta</math> verbal und veranschaulichen Sie diese Relation.<br />
 
Die Strecke AB geschnitten mit g ergibt eine leere Menge. --[[Benutzer:Malilglowka|Malilglowka]] 17:48, 10. Mai 2012 (CEST)
 
Die Strecke AB geschnitten mit g ergibt eine leere Menge. --[[Benutzer:Malilglowka|Malilglowka]] 17:48, 10. Mai 2012 (CEST)
 +
 
b) Begründen Sie anschaulich, dass <math>\ \Theta</math> eine Äquivalenzrelation ist. Formulieren Sie dazu die Eigenschaften von Äquivalenzrelationen konkret auf die Relation <math>\ \Theta</math> bezogen.<br />
 
b) Begründen Sie anschaulich, dass <math>\ \Theta</math> eine Äquivalenzrelation ist. Formulieren Sie dazu die Eigenschaften von Äquivalenzrelationen konkret auf die Relation <math>\ \Theta</math> bezogen.<br />
 
Hinweis: Sie können die Transitivität noch nicht exakt beweisen; in dieser Aufgabe geht es zunächst darum, die Relationseigenschaften als geometrische Eigenschaften zu interpretieren und zu verstehen.<br />
 
Hinweis: Sie können die Transitivität noch nicht exakt beweisen; in dieser Aufgabe geht es zunächst darum, die Relationseigenschaften als geometrische Eigenschaften zu interpretieren und zu verstehen.<br />
  
 
[[Category:Einführung_P]]
 
[[Category:Einführung_P]]

Version vom 10. Mai 2012, 16:49 Uhr

Es seien eine Ebene E (aufgefasst als Punktmenge) und eine Gerade g in E gegeben. Wir betrachten folgende Relation \ \Theta (\ \Theta ist ein willkürlich gewähltes Symbol, um die Relation nicht mit dem unauffälligen Buchstaben R bezeichnen zu müssen) in der Menge \ E \setminus g (also alle Punkte der Ebene E, die nicht der Geraden g angehören): Für beliebige \ A,B \in E \setminus g gilt: \ A  \Theta B: \Leftrightarrow \overline{AB}\cap g = \lbrace \rbrace.
a) Beschreiben Sie die Relation \ \Theta verbal und veranschaulichen Sie diese Relation.
Die Strecke AB geschnitten mit g ergibt eine leere Menge. --Malilglowka 17:48, 10. Mai 2012 (CEST)

b) Begründen Sie anschaulich, dass \ \Theta eine Äquivalenzrelation ist. Formulieren Sie dazu die Eigenschaften von Äquivalenzrelationen konkret auf die Relation \ \Theta bezogen.
Hinweis: Sie können die Transitivität noch nicht exakt beweisen; in dieser Aufgabe geht es zunächst darum, die Relationseigenschaften als geometrische Eigenschaften zu interpretieren und zu verstehen.