Übung 7: Unterschied zwischen den Versionen
Aus Geometrie-Wiki
*m.g.* (Diskussion | Beiträge) (→Aufgabe 7.3) |
*m.g.* (Diskussion | Beiträge) (→Aufgabe 7.3) |
||
Zeile 8: | Zeile 8: | ||
Der Punkt <math>\ B</math> möge die Strecke <math>\overline{AC}</math> derart in die Teilstrecken <math>\overline{AB}</math> und <math>\overline{BC}</math> teilen, dass <math>\left| AB \right| > \left| BC \right|</math> gilt. Beweisen Sie:<br /> | Der Punkt <math>\ B</math> möge die Strecke <math>\overline{AC}</math> derart in die Teilstrecken <math>\overline{AB}</math> und <math>\overline{BC}</math> teilen, dass <math>\left| AB \right| > \left| BC \right|</math> gilt. Beweisen Sie:<br /> | ||
Wenn <math>\frac{ \left| AC \right| }{\left| AB \right| } = \frac{\left| AB \right| }{\left| BC \right| }</math>, dann <math>\frac{ \left| AC \right| }{\left| AB \right|} = \frac{1 + \sqrt{5}}{2}</math>. | Wenn <math>\frac{ \left| AC \right| }{\left| AB \right| } = \frac{\left| AB \right| }{\left| BC \right| }</math>, dann <math>\frac{ \left| AC \right| }{\left| AB \right|} = \frac{1 + \sqrt{5}}{2}</math>. | ||
+ | |||
+ | == Aufgabe 7.4 (*) == | ||
+ | Was hat Aufgabe 7.3 hiermit zu tun? | ||
+ | |||
+ | [[Bild:Apfel_halb.jpg]] |
Version vom 3. Juni 2010, 12:34 Uhr
Inhaltsverzeichnis |
Aufgabe 7.1
Beweisen Sie: Zu jeder Strecke existiert genau eine Strecke mit und .
Aufgabe 7.2
Beweisen Sie: Zu jeder Strecke existiert genau eine Strecke mit und .
Aufgabe 7.3
Der Punkt möge die Strecke derart in die Teilstrecken und teilen, dass gilt. Beweisen Sie:
Wenn , dann .
Aufgabe 7.4 (*)
Was hat Aufgabe 7.3 hiermit zu tun?