Lösung von Aufgabe 10.6 S: Unterschied zwischen den Versionen
Zeile 21: | Zeile 21: | ||
Kleinigkeit: | Kleinigkeit: | ||
<math>\left|\overline{AC} \right| = \left|\overline{AC} \right|</math> hier entweder <math>\overline {AC} \tilde {=} \overline {AC} </math> ODER <math>|AC| = |AC|</math>. Das kommt mehrmals im Beweis vor und sollte noch verbessert werden.--[[Benutzer:Andreas|Tutor Andreas]] 19:47, 1. Jul. 2012 (CEST) | <math>\left|\overline{AC} \right| = \left|\overline{AC} \right|</math> hier entweder <math>\overline {AC} \tilde {=} \overline {AC} </math> ODER <math>|AC| = |AC|</math>. Das kommt mehrmals im Beweis vor und sollte noch verbessert werden.--[[Benutzer:Andreas|Tutor Andreas]] 19:47, 1. Jul. 2012 (CEST) | ||
+ | [[Kategorie:Einführung_S]] |
Version vom 1. Juli 2012, 18:56 Uhr
Lösungsversuch Nummero6/Tchu Tcha Tcha:
a)Parallelogramme.
Def. (Parallelogramm): Ein Viereck, bei dem die gegenüberliegenden Seiten jeweils gleichlang sind, nennt man Parallelogramm.
b)Wenn ein Viereck ein Parallelogramm ist, dann halbieren sich seine Diagonalen.
(1) // Voraussetzung
(2) // Voraussetzung
(3) // trivial
(4) // (1-3), SSS
(4a) // (4), Dreieckskongruenz
(5) // trivial
(6) // (1), (2), (5), SSS
(6a) // (6), Dreieckskongruenz
(7) // (1), (4a), (6a), WSW
(8) // (7), Dreieckskongruenz
qed
--Tchu Tcha Tcha 18:55, 28. Jun. 2012 (CEST)
Eine Kleinigkeit sollte man noch verändern, aber ansonsten völlig nachvollziehbar und korrekt.
Kleinigkeit:
hier entweder ODER . Das kommt mehrmals im Beweis vor und sollte noch verbessert werden.--Tutor Andreas 19:47, 1. Jul. 2012 (CEST)