Lösung von Aufgabe 2.3 (SoSe 12 P): Unterschied zwischen den Versionen
(Die Seite wurde neu angelegt: „'''Satz: In einem Dreieck <math>\overline{ABC} </math> mit |AC|< |BC| < |AB| sind die Winkel α und β nicht kongruent zueinander. '''<br /><br /> '''a) Welche…“) |
|||
Zeile 14: | Zeile 14: | ||
Beh: |α| ≠ |β|<br /> | Beh: |α| ≠ |β|<br /> | ||
Bew: Nach Umkehrung des Basiswinkelsatzes gilt: Wenn |α|= |β| dann gilt |AC|= |BC|. Die Kontraposition der Umkehrung lautet also: Wenn |AC| ≠ |BC| dann gilt |α| ≠ |β|. Da die Kontraposition gleichwertig ist, kann man auch diese beweisen. Da nach Voraussetzung gilt: |AC|< |BC|, d.h. |AC| ≠ |BC|, kann nach Kontraposition der Umkehrung des Basiswinkelsatzes direkt gefolgert werden: |α| ≠ |β|. Damit ist der Satz bewiesen.<br /><br /> | Bew: Nach Umkehrung des Basiswinkelsatzes gilt: Wenn |α|= |β| dann gilt |AC|= |BC|. Die Kontraposition der Umkehrung lautet also: Wenn |AC| ≠ |BC| dann gilt |α| ≠ |β|. Da die Kontraposition gleichwertig ist, kann man auch diese beweisen. Da nach Voraussetzung gilt: |AC|< |BC|, d.h. |AC| ≠ |BC|, kann nach Kontraposition der Umkehrung des Basiswinkelsatzes direkt gefolgert werden: |α| ≠ |β|. Damit ist der Satz bewiesen.<br /><br /> | ||
+ | |||
+ | Meiner Meinung nach stimmt Beweis 2 --Monello | ||
+ | |||
b) '''Beweisen Sie den Satz indirekt mit Widerspruch.'''<br /> | b) '''Beweisen Sie den Satz indirekt mit Widerspruch.'''<br /> | ||
+ | Vor. und Beh. wie oben, Annahme: Winkel alpha kongruent zu Winkel beta | ||
+ | 1. Wenn alpha kongruent zu beta, dann |AC|=|BC| (Annahme, Basiswinkelsatz) | ||
+ | 2. |AC|< |BC| (Vor.) | ||
+ | 3. |AC|≠ |BC| (2.) | ||
+ | 4. Widerspruch | ||
+ | -> Annahme ist zu Verwerfen, Behauptung ist anzunehmen. | ||
+ | q.e.d. | ||
[[Category:Einführung_P]] | [[Category:Einführung_P]] |
Version vom 14. Juli 2012, 14:23 Uhr
Satz: In einem Dreieck mit |AC|< |BC| < |AB| sind die Winkel α und β nicht kongruent zueinander.
a) Welcher Beweis ist korrekt? Begründen Sie ausführlich! (Der Basiswinkelsatz und seine Umkehrung seien bereits bewiesen.)
Beweis 1)
Sei ein Dreieck.
Vor: |AC|< |BC| < |AB|.
Beh: |α| ≠ |β|
Bew: Da nach Voraussetzung |AC| ≠ |BC| gilt nach dem Basiswinkelsatz |α| ≠ |β|. Damit ist der Satz bewiesen.
Beweis 2)
Sei ein Dreieck.
Vor: |AC|< |BC| < |AB|.
Beh: |α| ≠ |β|
Bew: Nach Umkehrung des Basiswinkelsatzes gilt: Wenn |α|= |β| dann gilt |AC|= |BC|. Die Kontraposition der Umkehrung lautet also: Wenn |AC| ≠ |BC| dann gilt |α| ≠ |β|. Da die Kontraposition gleichwertig ist, kann man auch diese beweisen. Da nach Voraussetzung gilt: |AC|< |BC|, d.h. |AC| ≠ |BC|, kann nach Kontraposition der Umkehrung des Basiswinkelsatzes direkt gefolgert werden: |α| ≠ |β|. Damit ist der Satz bewiesen.
Meiner Meinung nach stimmt Beweis 2 --Monello
b) Beweisen Sie den Satz indirekt mit Widerspruch.
Vor. und Beh. wie oben, Annahme: Winkel alpha kongruent zu Winkel beta 1. Wenn alpha kongruent zu beta, dann |AC|=|BC| (Annahme, Basiswinkelsatz) 2. |AC|< |BC| (Vor.) 3. |AC|≠ |BC| (2.) 4. Widerspruch -> Annahme ist zu Verwerfen, Behauptung ist anzunehmen. q.e.d.