Lösung von Aufgabe 4.2 P (WS 12 13): Unterschied zwischen den Versionen
Aus Geometrie-Wiki
(Die Seite wurde neu angelegt: „a) Definieren Sie die Begriffe: "gleichseitiges Dreieck" und "gleichschenkliges Dreieck". Die Begriffe "Dreieck" und "Seite eines Dreiecks" seien bereits definier…“) |
|||
Zeile 1: | Zeile 1: | ||
a) Definieren Sie die Begriffe: "gleichseitiges Dreieck" und "gleichschenkliges Dreieck". Die Begriffe "Dreieck" und "Seite eines Dreiecks" seien bereits definiert. <br /> | a) Definieren Sie die Begriffe: "gleichseitiges Dreieck" und "gleichschenkliges Dreieck". Die Begriffe "Dreieck" und "Seite eines Dreiecks" seien bereits definiert. <br /> | ||
+ | |||
+ | Ein gleichseitiges Dreieck ist ein Dreieck, bei dem alle Seiten gleich lang sind.--[[Benutzer:Der Bohrer|Der Bohrer]] 11:45, 22. Nov. 2012 (CET) | ||
+ | |||
+ | Ein gleichschenkliges Dreieck ist ein Dreieck mit zwei gleich langen Seiten.--[[Benutzer:Der Bohrer|Der Bohrer]] 11:45, 22. Nov. 2012 (CET) | ||
+ | |||
b) Beweisen Sie durch Kontraposition: Jedes gleichseitige Dreieck ist auch ein gleichschenkliges Dreieck.<br /> | b) Beweisen Sie durch Kontraposition: Jedes gleichseitige Dreieck ist auch ein gleichschenkliges Dreieck.<br /> | ||
+ | <math>\left( A\Rightarrow B\right) \Leftrightarrow \left(\neg B\Rightarrow \neg A\right) </math> | ||
+ | Wenn ein Dreieck also nicht gleichschenklig ist <math>\left(\neg B\right)</math> , dann ist es auch nicht gleichseitig <math>\left( \neg A \right)</math> . | ||
+ | Da diese Implikation stimmt, stimmt auch die Äquivalenz.--[[Benutzer:Der Bohrer|Der Bohrer]] 11:45, 22. Nov. 2012 (CET) | ||
Version vom 22. November 2012, 11:45 Uhr
a) Definieren Sie die Begriffe: "gleichseitiges Dreieck" und "gleichschenkliges Dreieck". Die Begriffe "Dreieck" und "Seite eines Dreiecks" seien bereits definiert.
Ein gleichseitiges Dreieck ist ein Dreieck, bei dem alle Seiten gleich lang sind.--Der Bohrer 11:45, 22. Nov. 2012 (CET)
Ein gleichschenkliges Dreieck ist ein Dreieck mit zwei gleich langen Seiten.--Der Bohrer 11:45, 22. Nov. 2012 (CET)
b) Beweisen Sie durch Kontraposition: Jedes gleichseitige Dreieck ist auch ein gleichschenkliges Dreieck.
Wenn ein Dreieck also nicht gleichschenklig ist , dann ist es auch nicht gleichseitig . Da diese Implikation stimmt, stimmt auch die Äquivalenz.--Der Bohrer 11:45, 22. Nov. 2012 (CET)