Lösung von Aufgabe 3.1 (SoSe 13 P): Unterschied zwischen den Versionen
Aus Geometrie-Wiki
Zeile 7: | Zeile 7: | ||
*Ein Dreieck ist genau dann ein gleichschenkliges Dreieck, wenn es kongruente Basiswinkel besitzt.--[[Benutzer:Nolessonlearned|Nolessonlearned]] 12:30, 6. Mai 2013 (CEST)<br /> Hierbei handelt es sich um eine Äquivalenzralation. Wenn A=>B und B=>A dann A<=>B (Äquivalenzrelationen sind symmetrisch)--[[Benutzer:Nolessonlearned|Nolessonlearned]] 12:35, 6. Mai 2013 (CEST)<br /> | *Ein Dreieck ist genau dann ein gleichschenkliges Dreieck, wenn es kongruente Basiswinkel besitzt.--[[Benutzer:Nolessonlearned|Nolessonlearned]] 12:30, 6. Mai 2013 (CEST)<br /> Hierbei handelt es sich um eine Äquivalenzralation. Wenn A=>B und B=>A dann A<=>B (Äquivalenzrelationen sind symmetrisch)--[[Benutzer:Nolessonlearned|Nolessonlearned]] 12:35, 6. Mai 2013 (CEST)<br /> | ||
<br /> | <br /> | ||
+ | |||
+ | *Der Ansatz ist gut, beide Sätze sind aber noch nicht korrekt. Wer kann helfen?--[[Benutzer:Tutorin Anne|Tutorin Anne]] 14:20, 6. Mai 2013 (CEST) | ||
[[Category:Einführung_P]] | [[Category:Einführung_P]] |
Version vom 6. Mai 2013, 13:20 Uhr
Der Basiswinkelsatz lautet: Im gleichschenkligen Dreieck sind die Basiswinkel kongruent zueinander.
a) Wie lautet die Umkehrung des Basiswinkelsatzes?
- Wenn in einem Dreieck die Basiswinkel kongruent zueinander sind, dann handelt es sich um ein gleichschenkliges Dreieck.--Nolessonlearned 12:15, 6. Mai 2013 (CEST)
b) Fassen Sie den Basiswinkelsatz und seine Umkehrung zu einem Satz zusammen.
- Ein Dreieck ist genau dann ein gleichschenkliges Dreieck, wenn es kongruente Basiswinkel besitzt.--Nolessonlearned 12:30, 6. Mai 2013 (CEST)
Hierbei handelt es sich um eine Äquivalenzralation. Wenn A=>B und B=>A dann A<=>B (Äquivalenzrelationen sind symmetrisch)--Nolessonlearned 12:35, 6. Mai 2013 (CEST)
- Der Ansatz ist gut, beide Sätze sind aber noch nicht korrekt. Wer kann helfen?--Tutorin Anne 14:20, 6. Mai 2013 (CEST)