Lösung von Aufgabe 3.1 (SoSe 13 P): Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
Zeile 7: Zeile 7:
 
*Ein Dreieck ist genau dann ein gleichschenkliges Dreieck, wenn es kongruente Basiswinkel besitzt.--[[Benutzer:Nolessonlearned|Nolessonlearned]] 12:30, 6. Mai 2013 (CEST)<br /> Hierbei handelt es sich um eine Äquivalenzralation. Wenn A=>B und B=>A dann A<=>B (Äquivalenzrelationen sind symmetrisch)--[[Benutzer:Nolessonlearned|Nolessonlearned]] 12:35, 6. Mai 2013 (CEST)<br />
 
*Ein Dreieck ist genau dann ein gleichschenkliges Dreieck, wenn es kongruente Basiswinkel besitzt.--[[Benutzer:Nolessonlearned|Nolessonlearned]] 12:30, 6. Mai 2013 (CEST)<br /> Hierbei handelt es sich um eine Äquivalenzralation. Wenn A=>B und B=>A dann A<=>B (Äquivalenzrelationen sind symmetrisch)--[[Benutzer:Nolessonlearned|Nolessonlearned]] 12:35, 6. Mai 2013 (CEST)<br />
 
<br />
 
<br />
 +
 +
*Der Ansatz ist gut, beide Sätze sind aber noch nicht korrekt. Wer kann helfen?--[[Benutzer:Tutorin Anne|Tutorin Anne]] 14:20, 6. Mai 2013 (CEST)
  
 
[[Category:Einführung_P]]
 
[[Category:Einführung_P]]

Version vom 6. Mai 2013, 13:20 Uhr

Der Basiswinkelsatz lautet: Im gleichschenkligen Dreieck sind die Basiswinkel kongruent zueinander.
a) Wie lautet die Umkehrung des Basiswinkelsatzes?

  • Wenn in einem Dreieck die Basiswinkel kongruent zueinander sind, dann handelt es sich um ein gleichschenkliges Dreieck.--Nolessonlearned 12:15, 6. Mai 2013 (CEST)


b) Fassen Sie den Basiswinkelsatz und seine Umkehrung zu einem Satz zusammen.

  • Ein Dreieck ist genau dann ein gleichschenkliges Dreieck, wenn es kongruente Basiswinkel besitzt.--Nolessonlearned 12:30, 6. Mai 2013 (CEST)
    Hierbei handelt es sich um eine Äquivalenzralation. Wenn A=>B und B=>A dann A<=>B (Äquivalenzrelationen sind symmetrisch)--Nolessonlearned 12:35, 6. Mai 2013 (CEST)


  • Der Ansatz ist gut, beide Sätze sind aber noch nicht korrekt. Wer kann helfen?--Tutorin Anne 14:20, 6. Mai 2013 (CEST)