Lösung von Zusatzaufgabe 11.2P (SoSe 13): Unterschied zwischen den Versionen
Aus Geometrie-Wiki
| Zeile 1: | Zeile 1: | ||
Beweisen Sie Satz IX.9:<br /> | Beweisen Sie Satz IX.9:<br /> | ||
Gegeben seien zwei zueinander parallele Spiegelgeraden ''a'' und ''b''. Wir betrachten die Verkettung <math>S_{a}\circ S_{b} </math>. Jeder Punkt ''P'' hat dabei zu seinem Bildpunkt <math>P''=S_{a}\circ S_{b}(P) </math> einen Abstand der doppelt so groß ist wie der Abstand der beiden Spiegelgeraden.<br /> | Gegeben seien zwei zueinander parallele Spiegelgeraden ''a'' und ''b''. Wir betrachten die Verkettung <math>S_{a}\circ S_{b} </math>. Jeder Punkt ''P'' hat dabei zu seinem Bildpunkt <math>P''=S_{a}\circ S_{b}(P) </math> einen Abstand der doppelt so groß ist wie der Abstand der beiden Spiegelgeraden.<br /> | ||
| + | |||
| + | Hinweis: Hier genügt ein exemplarischer Beweis für eine mögliche Lage von P. Nehmen wir doch mal an, P und seine Spiegelpunkte liegen so:<br /> | ||
| + | [[Datei: Z11-2-Skizze.PNG]] | ||
| + | <br />--[[Benutzer:Tutorin Anne|Tutorin Anne]] 17:30, 12. Jul. 2013 (CEST) | ||
| + | |||
| + | |||
[[Kategorie:Einführung_P]]<br /> | [[Kategorie:Einführung_P]]<br /> | ||
Version vom 12. Juli 2013, 16:30 Uhr
Beweisen Sie Satz IX.9:
Gegeben seien zwei zueinander parallele Spiegelgeraden a und b. Wir betrachten die Verkettung
. Jeder Punkt P hat dabei zu seinem Bildpunkt
einen Abstand der doppelt so groß ist wie der Abstand der beiden Spiegelgeraden.
Hinweis: Hier genügt ein exemplarischer Beweis für eine mögliche Lage von P. Nehmen wir doch mal an, P und seine Spiegelpunkte liegen so:
--Tutorin Anne 17:30, 12. Jul. 2013 (CEST)

