Lösung von Aufgabe 11.3: Unterschied zwischen den Versionen
Aus Geometrie-Wiki
Zeile 11: | Zeile 11: | ||
<br /> | <br /> | ||
− | [[Bild:Skizze_zu_Beweis_sss.JPG| | + | [[Bild:Skizze_zu_Beweis_sss.JPG|400px]]<br /> |
<br /> | <br /> | ||
Version vom 1. Juli 2010, 00:39 Uhr
Beweisen Sie den Kongruenzsatz SSS.
Vor.:
Beh.:
Bew.:
- Es ex. ein Strahl
mit
und
bzw.
(Begr.: Winkelkonstruktionsaxiom).
- Es ex außerdem ein Punkt
mit
und
bzw.
(Begr.: Axiom vom Lineal).
- Wir haben nun also ein Dreieck
konstruiert, dass kongruent zu
ist. Denn es gilt ja
. Jetzt genügt es zu zeigen,
kongruent zu
ist. Denn die Kongruenz ist transitiv, es würde daraus also auch
folgen.
z.z.:
- Dafür wiederum genügt es nach dem Kongruenzaxiom sws zu zeigen, dass
.
- Nach Vor. gilt
.
(Begr.: Transitivität, eigentlich fast trivial)
- Kongruenz ist reflexiv, also ist auch klar, dass
gilt.
- Also bleibt nun noch
z.z.:
- Fürs weitere Vorgehen wieder eine kurze Feststellung, die eigentlich jeder sieht:
(Vor.)
- Ich gehe davon aus, dass der folgende Satz gilt, ohne ihn jetzt zu beweisen:
- Satz: Liegt ein Punkt
auf der Mittelsenkrechten
der Strecke
, dann und nur dann hat er von
und
den gleichen Abstand.
- Satz: Liegt ein Punkt
hat ja nun den gleichen Abstand von
wie von
, also
.
- Für
gilt Entsprechendes, also
.
- Nach dem Satz liegen also
und
auf der Mittelsenkrechten von
. Es ist sogar so, dass die Gerade
die Mittelsenkrechte von
ist (Begr.: irgendein Inzidenzaxiom).
- Nach Def. der Mittelsenkrechten ist der Schnittpunkt
von
und
der Mittelpunkt von
, d.h.
bzw.
.
- Nach Def. gilt außerdem
, d.h. die entstehenden Winkel sind rechte Winkel.
- Nun gilt nach Def. vom rechten Winkel, dass sie gleich groß sind bzw. damit auch kongruent, also
.
- Mit dieser Winkelkongruenz sind wir nur noch wenige Schritte vom Ziel entfernt.
- Wegen des Kongruenzaxioms sws wissen wir nun, dass die Dreiecke
und
kongruent sind, denn es gilt:
.
- Nach der Def. der Dreieckskongruenz sind dann auch die Winkel
und
kongruent.
- Jetzt sieht es jeder, aber der Vollständigkeit halber sollte man noch zeigen, dass diese Winkel die gleichen sind wie die, die wir vorhin schon gemeint haben.
z.z.:
- Der Winkel
besteht aus den Schenkeln
und
. Wir wissen aber, dass
auf
liegt. Also ist
identisch mit
. Also auch
.
- Entsprechendes gilt für
, also
.
q.e.d.