Lösung von Aufgabe 11.3: Unterschied zwischen den Versionen
Aus Geometrie-Wiki
| Zeile 86: | Zeile 86: | ||
|- | |- | ||
|} | |} | ||
| − | + | <br /> | |
| + | o.B.d.A. | ||
| + | <br /> | ||
| + | Diese Begründung kann analog an Punkt B, zw. Punkt C durchgeführt werden, dadurch kann man die Kongruenz der Seiten <math>a</math> und <math>a_2</math> nachweisen. | ||
| + | <br /> | ||
zu den Scheitelwinkel(*): | zu den Scheitelwinkel(*): | ||
Hatten wir das schon bewiesen? Hier in Kurzform (man verzeihe die formlose Sprache, es seien natürlich die Winkel das Innere der Strahlen usw.: | Hatten wir das schon bewiesen? Hier in Kurzform (man verzeihe die formlose Sprache, es seien natürlich die Winkel das Innere der Strahlen usw.: | ||
Version vom 7. Juli 2010, 15:51 Uhr
Beweisen Sie den Kongruenzsatz SSS.
Lösung 1
Vor.:
Beh.:
Bew.:
- Es ex. ein Strahl
mit
und
bzw.
(Begr.: Winkelkonstruktionsaxiom).
- Es ex. außerdem ein Punkt
mit
und
bzw.
(Begr.: Axiom vom Lineal).
- Wir haben nun also ein Dreieck
konstruiert, dass kongruent zu
ist. Denn es gilt ja
. Jetzt genügt es zu zeigen,
kongruent zu
ist. Denn die Kongruenz ist transitiv, es würde daraus also auch
folgen.
z.z.:
- Dafür wiederum genügt es nach dem Kongruenzaxiom sws zu zeigen, dass
.
- Nach Vor. gilt
.
(Begr.: Transitivität, eigentlich fast trivial)
- Kongruenz ist reflexiv, also ist auch klar, dass
gilt.
- Also bleibt nun noch
z.z.:
- Fürs weitere Vorgehen wieder eine kurze Feststellung, die eigentlich jeder sieht:
(Vor.)
- Ich gehe davon aus, dass der folgende Satz gilt, ohne ihn jetzt zu beweisen:
- Satz: Liegt ein Punkt
auf der Mittelsenkrechten
der Strecke
, dann und nur dann hat er von
und
den gleichen Abstand.
- Satz: Liegt ein Punkt
hat ja nun den gleichen Abstand von
wie von
, also
.
- Für
gilt Entsprechendes, also
.
- Nach dem Satz liegen also
und
auf der Mittelsenkrechten von
. Es ist sogar so, dass die Gerade
die Mittelsenkrechte von
ist (Begr.: irgendein Inzidenzaxiom).
- Nach Def. der Mittelsenkrechten ist der Schnittpunkt
von
und
der Mittelpunkt von
, d.h.
bzw.
.
- Nach Def. gilt außerdem
, d.h. die entstehenden Winkel sind rechte Winkel.
- Nun gilt nach Def. vom rechten Winkel, dass sie gleich groß sind bzw. damit auch kongruent, also
.
- Mit dieser Winkelkongruenz sind wir nur noch wenige Schritte vom Ziel entfernt.
- Wegen des Kongruenzaxioms sws wissen wir nun, dass die Dreiecke
und
kongruent sind, denn es gilt:
.
- Nach der Def. der Dreieckskongruenz sind dann auch die Winkel
und
kongruent.
- Jetzt sieht es jeder, aber der Vollständigkeit halber sollte man noch zeigen, dass diese Winkel die gleichen sind wie die, die wir vorhin schon gemeint haben.
z.z.:
- Der Winkel
besteht aus den Schenkeln
und
. Wir wissen aber, dass
auf
liegt. Also ist
identisch mit
. Also auch
.
- Entsprechendes gilt für
, also
.
q.e.d.
Lösung 2
Leider ist in der Skizze ein Punkt falsch bezeichnet, es muss natürlich
statt
heißen.
Vor.:
Beh.:
| No. | Schritt | Begründung |
| 1a | Es existiert ein Punkt für den gilt |
Satz III.1: Jede Strecke hat einen und nur einen Mittelpunkt. ist Mittelpunkt der Strecke Axiom III.1: (Axiom vom Lineal) |
| 1b | Es existiert ein Punkt für den gilt |
Satz III.1: Jede Strecke hat einen und nur einen Mittelpunkt. ist Mittelpunkt der Strecke Axiom III.1: (Axiom vom Lineal) |
| 2 | ![]() |
Scheitelwinkel(*) |
| 3 | ![]() |
Vor, (1) (2) SWS (*), Dreieckskongruenz |
o.B.d.A.
Diese Begründung kann analog an Punkt B, zw. Punkt C durchgeführt werden, dadurch kann man die Kongruenz der Seiten
und
nachweisen.
zu den Scheitelwinkel(*):
Hatten wir das schon bewiesen? Hier in Kurzform (man verzeihe die formlose Sprache, es seien natürlich die Winkel das Innere der Strahlen usw.:
- Vor: Es existieren am Schnittpunkt zweier Geraden
- Beh:
- Schritt 1a:
, Axiom IV.4: (Supplementaxiom): Nebenwinkel an
sind supplementär.
- Schritt 1b:
, Axiom IV.4: (Supplementaxiom): Nebenwinkel an
sind supplementär.
- Schritt 1c:
analog zu 1a
- Schritt 1d:
analog zu 1b
- Schritt 2: Algebraische Umformung
- Schritt 3:
![]()
--Heinzvaneugen 14:07, 7. Jul. 2010 (UTC)
ist Mittelpunkt der Strecke
für den gilt

