Lösung von Aufgabe 13.2P (WS 16/17): Unterschied zwischen den Versionen
AlanTu (Diskussion | Beiträge) (Meine Lösung hinzugefügt.) |
AlanTu (Diskussion | Beiträge) K (Kleine Korrektur) |
||
Zeile 12: | Zeile 12: | ||
===Lösung von AlanTu=== | ===Lösung von AlanTu=== | ||
+ | '''Hinweis:''' Diese Lösung enthält zwei Geogebra-Applets, falls diese nicht angezeigt werden, muss [{{fullurl:{{PAGENAME}}|action=purge}} der Servercache geleert werden]. | ||
1. <math>\varphi_1</math> ist eine Translation, <math>\varphi_2</math> eine Drehung | 1. <math>\varphi_1</math> ist eine Translation, <math>\varphi_2</math> eine Drehung | ||
− | 2. Die roten Geraden <math>s_1: x=3</math> und <math>s_2: x=5</math> bilden <math>\varphi_1</math>, die grünen Geraden | + | 2. Die roten Geraden <math>s_1: x=3</math> und <math>s_2: x=5</math> bilden <math>\varphi_1</math>, die grünen Geraden <math>s_3: y=x</math> und <math>s_4: y=3</math> bilden <math>\varphi_2</math> (Die Spiegelachsen sind zur besseren Anschauung mit der Maus verschiebbar)<ggb_applet style="display:inline-block" width="844" height="538" version="4.0" ggbBase64="UEsDBBQACAgIAIG+OEoAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICACBvjhKAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbOVaXY/bNhZ9Tn8FoYd9im2SomQ59aTwDFo0i6QJMNmi6GKxoCTaw44saiXZYwf98XtJSrLk8cw4Tjx1XCMeSuIlL++5HzxUPP5hNU/QUuSFVOmFQ/rYQSKNVCzT2YWzKKe9wPnh9XfjmVAzEeYcTVU+5+WFw7SkjC+cMBScx8NhL2bTaY+5AvdGfhj2vBELpyTEbBpQB6FVIV+l6hc+F0XGI3Ed3Yg5f6siXhrFN2WZvRoM7u7u+rWqvspng9ks7K+K2EGwzLS4cKqLVzBdZ9Cda8QpxmTw27u3dvqeTIuSp5FwkDZhIV9/92J8J9NY3aE7GZc3YDAZ+Q66EXJ2A0YFZOiggZbKAJFMRKVcigLGtm6N0eU8c4wYT3X/C3uFksYeB8VyKWORXzi4T/whpQwHmPpDzws810EqlyItK2FSKR3U042XUtzZefWVUckcVCqVhFxPif78E1FMMXqpG2IbCo3v2y5sn2HXNtQ2zDaelWF2OLOizMowK8NgjUtZyDARF86UJwVgKNNpDv5r7otynQiznurBxnzyEmwq5CcQdjEEigUdnmP8Un99+DLdMegaSVpay3zxqFLb39JZa7Q+3Vcl/SJD3Vop3WUm9R4w039EqbXrMXAbQ72WTlBl/pnvPY3uY2Zua3wY2f0V+uxZTBwP6lQZV9mBihstW0VPKeaFzhd3hLyRDnuCPMgNfwhR7iEygmZIEWQDIh5iHtySAPm6HSJ3CB0MuShAWo64yCSHF8AfNjST+ciDyfTTIeQkIqCIIc9FxOQUQ5BJyOQl5Ch1QcLzkAeDtHpC9RSuj5gPd26AGKxRp+SQgKALA+Ee1FPkEuTqwWSIqI98PR9hOtX9QC8dpqTIx8gnekLIashom80gHyBXW+NXcMk0W5QdiKJ5XF+WKmt8AdJQjzZlz9anTlV8MU54KBLYKa61JxFa8kRnhFE0VWmJaidS+2yW8+xGRsW1KEsYVaA/+JK/5aVY/QTSRa3byEYqLT7kqrxSyWKeFghFKsHNmlVCWte0WTXcuK0O1u7wWh1+63q4U6+CHrQoBOhXeVGL8zh+oyU2pQGQfJ8m68tc8NtMya4Z44HZdMZiESUyljz9FYJVa9G4oN17kB/QeiUqj6/XBYQwWv0ucgVFhoz6o9YncNDa9rg+7uP2B2YsIq6Tj3XHjDwY9EBX4FvVYtm4iK9EY/0sl3H7+k1xqZK4wcKYf8WzcpEb9gC1Mdc2TdJZIkyImGoLW3N0G6rVtY0N1871cZ3BHbb6w5mBHUFpoB6sd1a1oW2NjF5YI4WNDDYSuA42GTf9ZESNhGlD2xopiF67tMpQUltJcK1GFqagYaeTNib09T6/SGX5tr4pZXRbWUqs/C+LeSiaAOpOSb7SlOPBVoCNb0WeiqSKZ3DkQi0Km56tUI9FJOdwazsqQLh21r9gAfZpLGa5qNedGF5m4TK9uB2p9x6bqX7K1fxNuvwIkbC1gPGgXuW4iHKZ6XhDIewBt2ITU7EsOGwhcXucTkAwPdJbBcBTamgmi+kMEIMi3acfIE8X5Y0Cv08Snn5cwDRQZMBEhv7J0wXsERQD09OJmYg58DBUmujTwdC4ofgvMxRPI45U+AeUvS1HbTwK3VuhWIcr3PEku+GaBlawJHwt8g5QZr53Kt6GD7xjbIQSkBkeCf7PhLCRU1YJgzKY0ORbp4qBRwq0smrRumL2ny6cntusown9EoryLTDPwuRnM7G++FnGsTAbsi0M/0vtkMJGpFhliYxkWUWhRfMpXN1zwLVHtoDFz4+rKbgNbJMvgBU3tfW4sJInYaUVrF4FK6nXYYzVe0aHZtinW6Vn70gkB0FWb0n4a0fiIXFYhyE+Sn7L+QH5Tc8QVe85UI3UfM7TGKXmkPRO5rnKnQ1r57h++O/JSwTR+x8AiVjELZyLspab/INnqvjeaqjmfap+VEP+0iqycQHt8lmMWV0XOh9yhCrRxeXyHOoqOWpZ7QJ2dQ6ANRsR+UqIdZP7g0rWM5VuZffEJvQlNFTjuJ3VwO4TODwRKxZZMQ4NHHrDp3LdKqyd0Ex1aFF72L8tPNsOJvq9J8DtkXsVnnyOhx8Ow0LM9F2zkOiJQPz8hR5czWoa7tYbCjnajmIiJtGh/SYt4ZwozEHp/vHvVohMn7rfpx9znhb6xb6VaR0r9wSanw7QrAK6VyNNyBkBHZ4O0D22zZGCbwro/cnW1VNk6+rzydbVX0C23k+nhSi17zzjuOHeRKzeCLsfeoR98TE/XD7lh8vP98PlaZFe7yvTtL1IRwWBpR7NDe3E9U4a0h4YtQfy5kYTk/28spuetNxzriRlrwg88nLbMRj0g4AMA0ZGQzheUY/+2NP/X7nWlWDU/fgbLrNVGb6dfeAJZnNq3rnHb2Af3vLK2YAfnhr4mvNsv31Ya58whoMRxaPAw9invs2YTzqXviVK9NhG+eNpHeoPOdK7W2ewZ2QuNpA1f3Eb/sIe4i8Hs5jT5DLHeYHyKGHfD+6rQ+G+OkW479FzVtWm50Z/sh/6k0PRn5wi+jteSx8N/Edp/A4yv4PS70Xsd9D7HSR/B9X/csL/t6H9p8Zw6j2y98Ap4PxeXZ6mH3ruhufvPHSR0Rk5ITxNJ9Qv7esyDhnwTYE+aP9Syvwasfpp/ev/A1BLBwiXvZSrwgcAAPcvAABQSwECFAAUAAgICACBvjhKRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIAIG+OEqXvZSrwgcAAPcvAAAMAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAWggAAAAA" showResetIcon = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "true" showToolBar = "true" showToolBarHelp = "true" showAlgebraInput = "true" useBrowserForJS = "true" allowRescaling = "true" /> |
3. Da <math>\varphi_1</math> eine Translation ist, kann man die beiden Spiegelachsen <math>s_1</math> und <math>s_2</math> um 2 nach links verschieben, ohne die Abbildung zu verändern. Und da <math>\varphi_2</math> eine Drehung ist, können die beiden Spiegelachsen <math>s_3</math> und <math>s_4</math> um 45° gegen den Uhrzeigersinn (im „mathematischen Uhrzeigersinn“) gedreht werden ohne die Abbildung zu verändern. Da dann <math>s_2</math> und <math>s_3</math> deckungsgleich sind und die Spiegelungen an den beiden Achsen direkt nacheinander ausgeführt werden, heben sich die beiden Spiegelungen auf. | 3. Da <math>\varphi_1</math> eine Translation ist, kann man die beiden Spiegelachsen <math>s_1</math> und <math>s_2</math> um 2 nach links verschieben, ohne die Abbildung zu verändern. Und da <math>\varphi_2</math> eine Drehung ist, können die beiden Spiegelachsen <math>s_3</math> und <math>s_4</math> um 45° gegen den Uhrzeigersinn (im „mathematischen Uhrzeigersinn“) gedreht werden ohne die Abbildung zu verändern. Da dann <math>s_2</math> und <math>s_3</math> deckungsgleich sind und die Spiegelungen an den beiden Achsen direkt nacheinander ausgeführt werden, heben sich die beiden Spiegelungen auf. | ||
Version vom 25. Januar 2017, 00:31 Uhr
Dargestellt ist hier die Nacheinanderausführung zweier Abbildungen und , mit und .
Hinweis: Der Punkt E hat eine besondere Bedeutung für .
Falls nichts angezeigt wird, können Sie mit folgendem Link den Servercache leeren.
- Um welche Arten von Abbildungen handelt es sich bei und ?
- Zeichnen Sie jeweils für und die passende Anzahl von Spiegelachsen in die Skizze ein.
- Wir betrachten nun die Verkettung . Durch welche Ersatzabbildung kann diese Verkettung ersetzt werden? (Begründen Sie Ihre Entscheidung).
- Zeichnen Sie die Achsen der Ersatzabbildung in die Skizze oben ein. Hinweis: Sie dürfen das Gitter im Hintergrund als Orientierung nutzen.
Lösung von AlanTu
Hinweis: Diese Lösung enthält zwei Geogebra-Applets, falls diese nicht angezeigt werden, muss der Servercache geleert werden.
1. ist eine Translation, eine Drehung
2. Die roten Geraden und bilden , die grünen Geraden und bilden (Die Spiegelachsen sind zur besseren Anschauung mit der Maus verschiebbar)
3. Da eine Translation ist, kann man die beiden Spiegelachsen und um 2 nach links verschieben, ohne die Abbildung zu verändern. Und da eine Drehung ist, können die beiden Spiegelachsen und um 45° gegen den Uhrzeigersinn (im „mathematischen Uhrzeigersinn“) gedreht werden ohne die Abbildung zu verändern. Da dann und deckungsgleich sind und die Spiegelungen an den beiden Achsen direkt nacheinander ausgeführt werden, heben sich die beiden Spiegelungen auf.
4. Somit kann man die Geraden und als Spiegelachsen für die Ersatzabbildung heranziehen. Das entspricht einer Drehung um 90° entgegen dem mathematischen Drehsinn um den Schnittpunkt der beiden Spiegelachsen
--AlanTu (Diskussion) 00:29, 25. Jan. 2017 (CET)